Estimation methods for the LRD parameter under a change in the mean

被引:0
|
作者
Aeneas Rooch
Ieva Zelo
Roland Fried
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik
[2] Technische Universität Dortmund,Fakultät für Statistik
来源
Statistical Papers | 2019年 / 60卷
关键词
Hurst parameter; Estimation; Jump; Long-range dependence; Long memory; Change-point problems; 62M10;
D O I
暂无
中图分类号
学科分类号
摘要
When analyzing time series which are supposed to exhibit long-range dependence (LRD), a basic issue is the estimation of the LRD parameter, for example the Hurst parameter H∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \in (1/2, 1)$$\end{document}. Conventional estimators of H easily lead to spurious detection of long memory if the time series includes a shift in the mean. This defect has fatal consequences in change-point problems: Tests for a level shift rely on H, which needs to be estimated before, but this estimation is distorted by the level shift. We investigate two blocks approaches to adapt estimators of H to the case that the time series includes a jump and compare them with other natural techniques as well as with estimators based on the trimming idea via simulations. These techniques improve the estimation of H if there is indeed a change in the mean. In the absence of such a change, the methods little affect the usual estimation. As adaption, we recommend an overlapping blocks approach: If one uses a consistent estimator, the adaption will preserve this property and it performs well in simulations.
引用
收藏
页码:313 / 347
页数:34
相关论文
共 50 条
  • [41] Analysis of LRD Series with Time-Varying Hurst Parameter
    Ledesma Orozco, Sergio
    Cerda Villafana, Gustavo
    Avina Cervantes, Gabriel
    Hernandez Fusilier, Donato
    Torres Cisneros, Miguel
    COMPUTACION Y SISTEMAS, 2010, 13 (03): : 295 - 312
  • [42] Bias in the estimation of the mean reversion parameter in continuous time models
    Yu, Jun
    JOURNAL OF ECONOMETRICS, 2012, 169 (01) : 114 - 122
  • [43] Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean
    Radomyra Shevchenko
    Ciprian A. Tudor
    Statistical Inference for Stochastic Processes, 2020, 23 : 227 - 247
  • [44] Normalized Least Mean Squares Observer for Battery Parameter Estimation
    Kruger, Eiko
    Tran, Quoc Tuan
    Mamadou, Kelli
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [45] PARAMETER ESTIMATION OF COUPLED REACTORS BY CORRELATION METHODS
    SCHWALM, D
    ATOMKERNENERGIE, 1971, 17 (02): : 140 - &
  • [46] PARAMETER-ESTIMATION METHODS IN APPLIED MECHANICS
    WELLS, WR
    DEVELOPMENTS IN THEORETICAL AND APPLIED MECHANICS, VOL 14, 1988, 14 : 399 - 405
  • [47] Bayesian parameter estimation via variational methods
    Jaakkola, TS
    Jordan, MI
    STATISTICS AND COMPUTING, 2000, 10 (01) : 25 - 37
  • [48] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    EURASIP Journal on Advances in Signal Processing, 2020
  • [49] TLS based methods for exponential parameter estimation
    Chen, H
    VanHuffel, S
    Dowling, EM
    DeGroat, RD
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 295 - 305
  • [50] Parameter Estimation Methods for Chaotic Intercellular Networks
    Marino, Ines P.
    Ullner, Ekkehard
    Zaikin, Alexey
    PLOS ONE, 2013, 8 (11):