Singular Schrödinger Operators as Limits Point Interaction Hamiltonians

被引:0
|
作者
J. F. Brasche
R. Figari
A. Teta
机构
[1] Universität Bielefeld,Fakultät für Mathematik
[2] Dipartimento di Fisica,Dipartimento di Matematica
[3] Mostra d'Oltemare,undefined
[4] Università di Roma,undefined
[5] Plazzala Aldo Moro,undefined
来源
Potential Analysis | 1998年 / 8卷
关键词
Point interaction; generalized Schrödinger operator; resolvent convergence; Monte-Carlo-methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give results on the approximation of (generalized) Schrödinger operators of the form - ▵ + µ for some finite Radon measure µ on Rd. For d = 1 we shall show that weak convergence of measures µn to µ implies norm resolvent convergence of the operators -▵ + µn to -▵ + µ. In particular Schrödinger operators of the form - ▵ + µ for some finite Radon measure µ can be regularized or approximated by Hamiltonians describing point interactions. For d = 3 we shall show that a fairly large class of singular interactions can be regarded as limit of point interactions.
引用
收藏
页码:163 / 178
页数:15
相关论文
共 50 条
  • [41] Spectral identities for Schrödinger operators
    Guliyev, Namig J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [42] Kernel estimates for Schrödinger operators
    G. Metafune
    D. Pallara
    A. Rhandi
    Journal of Evolution Equations, 2006, 6 : 433 - 457
  • [43] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716
  • [44] On Learning Rates and Schrödinger Operators
    Shi, Bin
    Su, Weijie J.
    Jordan, Michael I.
    Journal of Machine Learning Research, 2023, 24
  • [45] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    Letters in Mathematical Physics, 2021, 111
  • [46] On the Negative Spectrum of One-Dimensional Schrödinger Operators with Point Interactions
    N. Goloschapova
    L. Oridoroga
    Integral Equations and Operator Theory, 2010, 67 : 1 - 14
  • [47] A singular perturbation problem for a nonlinear Schrödinger system with three wave interaction
    Osada, Yuki
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [48] A singular perturbation problem for a nonlinear Schrödinger system with three wave interaction
    Yuki Osada
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [49] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [50] On the Spectrum of the One-Particle Schrödinger Operator with Point Interaction
    Utkir Kulzhanov
    Z. I. Muminov
    Golibjon Ismoilov
    Lobachevskii Journal of Mathematics, 2022, 43 : 3525 - 3531