Normalized Solutions to the Kirchhoff Equation with Potential Term: Mass Super-Critical Case

被引:0
|
作者
Qun Wang
Aixia Qian
机构
[1] Qufu Normal University,School of Mathematical Sciences
关键词
Normalized solutions; Mass super-critical; Kirchhoff type problems; Variational methods; Energy functional; 35A15; 35B38; 35J60; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of normalized solution to the following nonlinear mass super-critical Kirchhoff equation -a+b∫RN|∇u|2▵u+V(x)u+λu=g(u)inRN0≤u∈Hr1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&-\left( a+b\int _{{\mathbb {R}}^{N}}|\nabla u|^{2}\right) \triangle u+V(x)u+\lambda u=g(u) \ \ {in} \ {{\mathbb {R}}^{N}}\\&0\le u\in H^{1}_{r}({\mathbb {R}}^{N}) \end{aligned}\right. \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a ,b>0$$\end{document} are constants, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in R$$\end{document}, and V(x) satisfies appropriate assumptions; g has a mass super-critical growth when N=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3$$\end{document}, and g(u)=|u|p-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u)=|u|^{p-2}u$$\end{document} with p∈(2+8N,2∗),2∗=2NN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (2+\frac{8}{N},2^{*}), 2^{*}=\frac{2N}{N-2}$$\end{document} when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. Here, we prove the existence of ground state normalized solution via variational methods.
引用
收藏
相关论文
共 50 条
  • [21] Normalized solutions to nonautonomous Kirchhoff equation
    Qiu, Xin
    Ou, Zeng Qi
    Lv, Ying
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 457 - 486
  • [22] Positive Normalized Solutions to a Kind of Fractional Kirchhoff Equation with Critical Growth
    Zhang, Shiyong
    Zhang, Qiongfen
    FRACTAL AND FRACTIONAL, 2025, 9 (03)
  • [23] Normalized solutions for Kirchhoff equation with L2-critical exponents
    Liu, Changlin
    Lv, Ying
    Ou, Zengqi
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (07)
  • [24] The existence and asymptotic behavior of normalized solutions for Kirchhoff equation with singular potential
    Wu, Yuanda
    Zeng, Xiaoyu
    Zhang, Yimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [25] Existence and concentration of positive solutions for a super-critical fourth order equation
    Maalaoui, Ali
    Martino, Vittorio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5482 - 5498
  • [26] Normalized solutions to the Kirchhoff Equation with triple critical exponents in R4
    Fang, Xingling
    Ou, Zengqi
    Lv, Ying
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [27] Existence and uniqueness of normalized solutions for the Kirchhoff equation
    Zeng, Xiaoyu
    Zhang, Yimin
    APPLIED MATHEMATICS LETTERS, 2017, 74 : 52 - 59
  • [28] Normalized solutions of Kirchhoff equations with critical and subcritical nonlinearities: the defocusing case
    Carriao, Paulo C.
    Miyagaki, Olimpio H.
    Vicente, Andre
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (05):
  • [29] Infinitely many positive solutions for a nonlinear field equation with super-critical growth
    Musso, Monica
    Wei, Juncheng
    Yan, Shusen
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 1 - 26
  • [30] Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations
    Hu, Tingxi
    Tang, Chun-Lei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)