On higher dimensional cocyclic Hadamard matrices

被引:0
|
作者
V. Álvarez
J. A. Armario
M. D. Frau
P. Real
机构
[1] University of Seville,Dpto. Matemática Aplicada I
关键词
(Co)homological model; Cocyclic matrix; Proper/improper higher dimensional Hadamard matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Provided that a cohomological model for G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is known, we describe a method for constructing a basis for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cocycles over G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, from which the whole set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cocyclic matrices over G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} may be straightforwardly calculated. Focusing in the case n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} (which is of special interest, e.g. for looking for cocyclic Hadamard matrices), this method provides a basis for 2-cocycles in such a way that representative 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-cocycles are calculated all at once, so that there is no need to distinguish between inflation and transgression 2-cocycles (as it has traditionally been the case until now). When n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document}, this method provides an uniform way of looking for higher dimensional n-cocyclic Hadamard matrices for the first time. We illustrate the method with some examples, for n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}. In particular, we give some examples of improper 3-dimensional 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-cocyclic Hadamard matrices.
引用
收藏
页码:191 / 206
页数:15
相关论文
共 50 条
  • [21] On D4t-Cocyclic Hadamard Matrices
    Alvarez, Victor
    Andres Armario, Jose
    Dolores Frau, Maria
    Gudiel, Felix
    Belen Guemes, Maria
    Osuna, Amparo
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (08) : 352 - 368
  • [22] The homological reduction method for computing cocyclic Hadamard matrices
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Real, P.
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 558 - 570
  • [23] The cocyclic Hadamard matrices of order less than 40
    Padraig Ó Catháin
    Marc Röder
    Designs, Codes and Cryptography, 2011, 58 : 73 - 88
  • [24] Automorphisms of higher-dimensional hadamard matrices
    Institute for Defense Analyses, Center for Communications Research, 4320 Westerra Court, San Diego, CA, 92121, United States
    不详
    J Comb Des, 2008, 6 (507-544):
  • [25] Automorphisms of Higher-Dimensional Hadamard Matrices
    de Launey, Warwick
    Stafford, Richard M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (06) : 507 - 544
  • [26] On Cocyclic Hadamard Matrices over Goethals-Seidel Loops
    Alvarez, Victor
    Armario, Jose Andres
    Falcon, Raul M.
    Frau, Maria Dolores
    Gudiel, Felix
    Guemes, Maria Belen
    Osuna, Amparo
    MATHEMATICS, 2020, 8 (01)
  • [27] On Zt x Z22-Cocyclic Hadamard Matrices
    Alvarez, Victor
    Gudiel, Felix
    Belen Gueemes, Maria
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (08) : 352 - 368
  • [28] Calculating cocyclic Hadamard matrices in Mathematica:: Exhaustive and heuristic searches
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Real, P.
    MATHEMATICAL SOFTWARE-ICMS 2006, PROCEEDINGS, 2006, 4151 : 419 - 422
  • [29] Constructing cocyclic Hadamard matrices of order 4p
    Acevedo, Santiago Barrera
    Cathain, Padraig O.
    Dietrich, Heiko
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (11) : 627 - 642
  • [30] Cocyclic Generalised Hadamard Matrices and Central Relative Difference Sets
    Perera A.A.I.
    Horadam K.J.
    Designs, Codes and Cryptography, 1998, 15 (2) : 187 - 200