On higher dimensional cocyclic Hadamard matrices

被引:0
|
作者
V. Álvarez
J. A. Armario
M. D. Frau
P. Real
机构
[1] University of Seville,Dpto. Matemática Aplicada I
关键词
(Co)homological model; Cocyclic matrix; Proper/improper higher dimensional Hadamard matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Provided that a cohomological model for G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is known, we describe a method for constructing a basis for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cocycles over G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, from which the whole set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-cocyclic matrices over G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} may be straightforwardly calculated. Focusing in the case n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} (which is of special interest, e.g. for looking for cocyclic Hadamard matrices), this method provides a basis for 2-cocycles in such a way that representative 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-cocycles are calculated all at once, so that there is no need to distinguish between inflation and transgression 2-cocycles (as it has traditionally been the case until now). When n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document}, this method provides an uniform way of looking for higher dimensional n-cocyclic Hadamard matrices for the first time. We illustrate the method with some examples, for n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}. In particular, we give some examples of improper 3-dimensional 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-cocyclic Hadamard matrices.
引用
收藏
页码:191 / 206
页数:15
相关论文
共 50 条
  • [1] On higher dimensional cocyclic Hadamard matrices
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Real, P.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (1-2) : 191 - 206
  • [2] On a family of cocyclic Hadamard matrices
    de Launey, W
    CODES AND DESIGNS, 2002, 10 : 187 - 205
  • [3] Hadamard Matrices with Cocyclic Core
    Alvarez, Victor
    Armario, Jose Andres
    Frau, Maria Dolores
    Gudiel, Felix
    Guemes, Maria Belen
    Osuna, Amparo
    MATHEMATICS, 2021, 9 (08)
  • [4] Cocyclic Hadamard matrices and hadamard groups are equivalent
    Flannery, DL
    JOURNAL OF ALGEBRA, 1997, 192 (02) : 749 - 779
  • [5] A genetic algorithm for cocyclic Hadamard matrices
    Alvarez, V
    Armario, JA
    Frau, MD
    Real, P
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2006, 3857 : 144 - 153
  • [6] An introduction to cocyclic generalised Hadamard matrices
    Horadam, KJ
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 115 - 131
  • [7] Cocyclic Hadamard matrices and difference sets
    de Launey, W
    Flannery, DL
    Horadam, KJ
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 47 - 61
  • [8] Classifying Cocyclic Butson Hadamard Matrices
    Egan, Ronan
    Flannery, Dane
    Cathain, Padraig O.
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 93 - 106
  • [9] On an inequivalence criterion for cocyclic Hadamard matrices
    Andres Armario, Jose
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 247 - 259
  • [10] On an inequivalence criterion for cocyclic Hadamard matrices
    José Andrés Armario
    Cryptography and Communications, 2010, 2 : 247 - 259