When investigating flow structures, and especially flow transitions, research projects often seek to increase insight using complementary numerical and physical experiments. Obtaining exact Reynolds number correspondence can frequently be difficult in experiments, particularly when relatively low values are required. Often, available test facilities were designed and optimised for a specific velocity range, meaning they have restrictions on the minimum flow velocity. This study describes a device to reduce the flow velocity locally in an open surface water channel. The underlying idea is to divert a controlled fraction of the incoming flow from the working section by increasing the pressure there, resulting in reduced velocity. This idea is realised using a ‘sub-channel’ that can be inserted into the main test chamber, with a variable porosity perforated screen at its downstream end. This study assesses and optimises the flow quality inside this structure, such as usable test section length, uniformity of the velocity profiles and turbulence intensity. The results demonstrate that the device creates high quality low Reynolds number flows, which is exemplified with the canonical circular cylinder in cross-flow.