共 50 条
Existence results for a singular quasilinear elliptic equation
被引:0
|作者:
Yongtao Jing
Zhaoli Liu
Zhi-Qiang Wang
机构:
[1] Capital Normal University,School of Mathematical Sciences
[2] Center for Applied Mathematics,Department of Mathematics and Statistics
[3] Tianjin University,undefined
[4] Utah State University,undefined
来源:
关键词:
Singular quasilinear elliptic equation;
Existence of positive solution;
Variational method;
Perturbation argument;
35J20;
35J25;
35J62;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Ω⊂RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega \subset \mathbb R^N$$\end{document} be a bounded domain with smooth boundary. Existence of a positive solution to the quasilinear equation -diva(x)+|u|θ∇u+θ2|u|θ-2u|∇u|2=|u|p-2uinΩ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} -\text {div}\left[ \left( a(x)+|u|^\theta \right) \nabla u\right] +\frac{\theta }{2}|u|^{\theta -2}u|\nabla u|^2=|u|^{p-2}u \quad \text {in}\ \Omega \end{aligned}$$\end{document}with zero Dirichlet boundary condition is proved. Here θ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta >0$$\end{document} and a(x) is a measurable function satisfying 0<α≤a(x)≤β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\alpha \le a(x)\le \beta $$\end{document}. The equation involves singularity when 0<θ≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\theta \le 1$$\end{document}. As a main novelty with respect to corresponding results in the literature, we only assume θ+2<p<2∗2(θ+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta +2<p<\frac{2^*}{2}(\theta +2)$$\end{document}. The proof relies on a perturbation method and a critical point theory for E-differentiable functionals.
引用
收藏
页码:67 / 84
页数:17
相关论文