In this paper, a projective-splitting method is proposed for finding a zero of the sum of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n$$\end{document} maximal monotone operators over a real Hilbert space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{H }$$\end{document}. Without the condition that either \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{H }$$\end{document} is finite dimensional or the sum of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n$$\end{document} operators is maximal monotone, we prove that the sequence generated by the proposed method is strongly convergent to an extended solution for the problem, which is closest to the initial point. The main results presented in this paper generalize and improve some recent results in this topic.
机构:
Nagoya Univ, Informat & Commun Headquarters, Chikusa Ku, Nagoya, Aichi 4648601, JapanNagoya Univ, Informat & Commun Headquarters, Chikusa Ku, Nagoya, Aichi 4648601, Japan
Ibaraki, Takanori
Takahashi, Wataru
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, JapanNagoya Univ, Informat & Commun Headquarters, Chikusa Ku, Nagoya, Aichi 4648601, Japan
机构:
Institut Montpelliérain Alexander Grothendieck, UMR CNRS, Université Montpellier, Place Eugène Bataillon, Montpellier CedexInstitut Montpelliérain Alexander Grothendieck, UMR CNRS, Université Montpellier, Place Eugène Bataillon, Montpellier Cedex
Attouch H.
Baillon J.-B.
论文数: 0引用数: 0
h-index: 0
机构:
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire, Université Paris Panthéon-Sorbonne, ParisInstitut Montpelliérain Alexander Grothendieck, UMR CNRS, Université Montpellier, Place Eugène Bataillon, Montpellier Cedex