Strong convergence of a splitting projection method for the sum of maximal monotone operators

被引:0
|
作者
Guo-ji Tang
Fu-quan Xia
机构
[1] Guangxi University for Nationalities,School of Science
[2] Sichuan Normal University,Department of Mathematics
来源
Optimization Letters | 2014年 / 8卷
关键词
Splitting method; Projection method; Maximal monotone operator; Strong convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a projective-splitting method is proposed for finding a zero of the sum of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} maximal monotone operators over a real Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H }$$\end{document}. Without the condition that either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H }$$\end{document} is finite dimensional or the sum of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} operators is maximal monotone, we prove that the sequence generated by the proposed method is strongly convergent to an extended solution for the problem, which is closest to the initial point. The main results presented in this paper generalize and improve some recent results in this topic.
引用
收藏
页码:1313 / 1324
页数:11
相关论文
共 50 条