Mid-infrared plasmonic silicon quantum dot/HgCdTe photodetector with ultrahigh specific detectivity

被引:0
|
作者
Yueying Cui
Zhouyu Tong
Xinlei Zhang
Wenhui Wang
Weiwei Zhao
Yuanfang Yu
Xiaodong Pi
Jialin Zhang
Zhenhua Ni
机构
[1] Southeast University,School of Physics and Key Laboratory of MEMS of Ministry of Education
[2] Zhejiang University,State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
来源
关键词
doped silicon quantum dots; HgCdTe; localized surface plasmon resonance; hot-hole tunneling; mid-infrared photodetector;
D O I
暂无
中图分类号
学科分类号
摘要
Highly sensitive photodetectors operating at mid-infrared (MIR) wavelengths are urgently required for the applications of astronomy, optical communication, security monitoring, and so forth. However, further promoting the sensitivity in conventional MIR devices for a higher detectivity is challenging. Among the potential strategies, integrating localized surface plasmon resonance with MIR semiconductors is a promising approach to developing high-performance optoelectronics. Here we demonstrate a high-sensitivity boron (B)-doped silicon quantum dot (Si-QD)/HgCdTe (MCT) MIR photodetector. Because of plasmon-induced hot-hole tunneling and enhanced light absorption, the hybrid photodetector exhibits a high specific detectivity of ∼1.6 × 109 cm·Hz1/2·W−1 (Jones) and a high-speed response (∼224 ns for the rise time and ∼580 ns for the fall time) at room temperature. Furthermore, the device achieves high-performance spectral blackbody detection with a peak detectivity of up to 1.6×1011 Jones at ∼5.8 µm under a cryogenic environment of 77 K, higher than that of bare MCT. This prominent enhancement can be attributed to the further suppression of hot-hole cooling due to a reduced phonon population at low temperatures, which facilitates more efficient hot-carrier extraction and contributes to ultrahigh sensitivity. The plasmonic material-integrated MCT architecture can pave the way for developing high-performance MIR photodetection.
引用
收藏
相关论文
共 50 条
  • [31] Mid-infrared HgTe Colloidal Quantum Dot LEDs
    Shen, Xingyu
    Peterson, John C.
    Guyot-Sionnest, Philippe
    ACS NANO, 2022, 16 (05) : 7301 - 7308
  • [32] Investigation of InAsSbP quantum dot mid-infrared sensors
    Harutyunyan, V. G.
    Gambaryan, K. M.
    Aroutiounian, V. M.
    Harutyunyan, I. G.
    JOURNAL OF SENSORS AND SENSOR SYSTEMS, 2015, 4 (02) : 249 - 253
  • [33] Mid-infrared HgTe colloidal quantum dot photodetectors
    Keuleyan, Sean
    Lhuillier, Emmanuel
    Brajuskovic, Vuk
    Guyot-Sionnest, Philippe
    NATURE PHOTONICS, 2011, 5 (08) : 489 - 493
  • [34] A plasmonic dipole optical antenna coupled quantum dot infrared photodetector
    Mojaverian, Neda
    Gu, Guiru
    Lu, Xuejun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (47)
  • [35] Silicon doped InP as an alternative plasmonic material for mid-infrared
    Panah, M. E. Aryaee
    Han, Li
    Christensen, Dennis V.
    Pryds, Nini
    Lavrinenko, A. V.
    Semenova, E. S.
    2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2016,
  • [36] High-performance mid-infrared quantum dot infrared photodetectors
    Chakrabarti, S
    Stiff-Roberts, AD
    Su, XH
    Bhattacharya, P
    Ariyawansa, G
    Perera, AGU
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (13) : 2135 - 2141
  • [37] Mid-infrared Plasmonic Inductors
    Torres, Victor
    Ortuno, Ruben
    Rodriguez-Ulibarri, Pablo
    Griol, Amadeu
    Martinez, Alejandro
    Navarro-Cia, Miguel
    Beruete, Miguel
    Sorolla, Mario
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [38] Narrowband HgCdTe infrared photodetector with integrated plasmonic structure
    Zhou, Z. I. J. I.
    Sang, M. A. O. S. H. E. N. G.
    Zhang, J. I. N. G. U. O.
    Wen, Z. H. E. N. G. J., I
    Qiu, Q. I. A. N. L. I.
    Xu, Q. I. A. N. Q. I. A. N.
    Tan, C. H. O. N. G.
    Zhou, D. O. N. G. J. I. E.
    Qiao, H. U., I
    LI, X. I. A. N. G. Y. A. N. G.
    Sun, Y. A. N.
    Dai, N. I. N. G.
    Chu, J. U. N. H. A. O.
    Hao, J. I. A. M. I. N. G.
    OPTICS LETTERS, 2023, 48 (07) : 1882 - 1885
  • [39] Avalanche multiplication for quantum dot photodetectors with ultrahigh detectivity
    Kim, Byeongsu
    Lee, Jung-Yong
    NATURE NANOTECHNOLOGY, 2025, 20 (02) : 192 - 193
  • [40] Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform
    Wang, Jianfei
    Hu, Juejun
    Becla, Piotr
    Agarwal, Anuradha M.
    Kimerling, Lionel C.
    OPTICS EXPRESS, 2010, 18 (12): : 12890 - 12896