Euler-Poincaré equations on semi-direct products

被引:0
|
作者
Emanuel-Ciprian Cismas
机构
[1] Universität Leibniz,Institut für Angewandte Mathematik
来源
关键词
Euler-Poincaré equations; Diffeomorphism group of the circle; Semi-direct products; 58D05; 58B25; 22E65; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Euler-Poincaré equations on the semi-direct products of the group of orientation preserving diffeomorphisms of the circle with itself. We establish a reduction result to the direct product structure which will allow us to investigate the well-posedness, in the smooth category, using geodesic flows on infinite dimensional Lie groups.
引用
收藏
页码:491 / 507
页数:16
相关论文
共 50 条
  • [21] SEMI-DIRECT PRODUCTS OF HOPF ALGEBRAS
    MOLNAR, RK
    JOURNAL OF ALGEBRA, 1977, 47 (01) : 29 - 51
  • [22] REPRESENTATION THEORY OF SEMI-DIRECT PRODUCTS
    REYES, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (JUN): : 281 - 290
  • [23] PERIVATIONS OF CERTAIN SEMI-DIRECT PRODUCTS
    HIKMA, Z
    LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (01) : 57 - 59
  • [24] An Euler-Poincaré Approach to Mean-Field Optimal Control
    Liu, Huageng
    Shi, Donghua
    Lecture Notes in Electrical Engineering, 2022, 861 LNEE : 2066 - 2072
  • [25] A decoupled, linearly implicit and high-order structure-preserving scheme for Euler-Poincaré equations
    Gao, Ruimin
    Li, Dongfang
    Mei, Ming
    Zhao, Dan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 218 : 679 - 703
  • [26] Bounds for the relative Euler-Poincaré characteristic of certain hyperelliptic fibrations
    Hirotaka Ishida
    manuscripta mathematica, 2005, 118 : 467 - 483
  • [27] On the essential dimension of some semi-direct products
    Ledet, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (03): : 422 - 427
  • [28] Multiplicity free subgroups of semi-direct products
    van Dijk, Gerrit
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (01): : 49 - 56
  • [29] Semi-direct products of lie algebras and their invariants
    Panyushev, Dmitri I.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (04) : 1199 - 1257
  • [30] Orbital convolution theory for semi-direct products
    Dooley, A. H.
    Wildberger, N. J.
    JOURNAL OF LIE THEORY, 2006, 16 (04) : 743 - 776