共 50 条
The swap graph of the finite soluble groups
被引:0
|作者:
Marco Di Summa
Andrea Lucchini
机构:
[1] Università degli Studi di Padova,Dipartimento di Matematica
来源:
关键词:
Soluble groups;
Swap conjecture;
Generating ;
-tuples;
20D10;
20F05;
05C25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For a d-generated finite group G we consider the graph Δd(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varDelta _d(G)$$\end{document} (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices (x1,⋯,xd)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(x_1,\dots ,x_d)$$\end{document} and (y1,⋯,yd)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(y_1,\dots ,y_d)$$\end{document} are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that Δd(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varDelta _d(G)$$\end{document} is a connected graph. We prove that this conjecture is true if G is a finite soluble group.
引用
收藏
页码:447 / 454
页数:7
相关论文