The swap graph of the finite soluble groups

被引:0
|
作者
Marco Di Summa
Andrea Lucchini
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica
来源
关键词
Soluble groups; Swap conjecture; Generating ; -tuples; 20D10; 20F05; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a d-generated finite group G we consider the graph Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _d(G)$$\end{document} (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices (x1,⋯,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_1,\dots ,x_d)$$\end{document} and (y1,⋯,yd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y_1,\dots ,y_d)$$\end{document} are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _d(G)$$\end{document} is a connected graph. We prove that this conjecture is true if G is a finite soluble group.
引用
收藏
页码:447 / 454
页数:7
相关论文
共 50 条
  • [21] A characterization of the finite soluble groups
    Barbara Baumeister
    Archiv der Mathematik, 1999, 72 : 167 - 176
  • [22] COHOMOLOGY OF FINITE SOLUBLE GROUPS
    LINNELL, PA
    JOURNAL OF ALGEBRA, 1987, 107 (01) : 53 - 62
  • [23] PERMUTABILITY IN FINITE SOLUBLE GROUPS
    BALLESTERBOLINCHES, A
    PEREZRAMOS, MD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 393 - 396
  • [24] Finite Generalized Soluble Groups
    J. Huang
    B. Hu
    A. N. Skiba
    Algebra and Logic, 2019, 58 : 173 - 185
  • [25] On injectors of finite soluble groups
    Guo, Wenbin
    Vorob'ev, N. T.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3200 - 3208
  • [26] On a class of finite soluble groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Li, Yangming
    JOURNAL OF GROUP THEORY, 2018, 21 (05) : 839 - 846
  • [27] Soluble Products of Finite Groups
    Cossey, John
    NOTE DI MATEMATICA, 2010, 30 : 1 - 7
  • [28] On finite products of soluble groups
    Amberg, B
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) : 93 - 108
  • [29] On the cohomology of finite soluble groups
    Robinson, Derek J. S.
    ARCHIV DER MATHEMATIK, 2015, 105 (02) : 101 - 108
  • [30] INJECTORS OF FINITE SOLUBLE GROUPS
    FISCHER, B
    GASCHUTZ, W
    HARTLEY, B
    MATHEMATISCHE ZEITSCHRIFT, 1967, 102 (05) : 337 - &