Simplifying one-loop amplitudes in superstring theory

被引:0
|
作者
Massimo Bianchi
Dario Consoli
机构
[1] Dipartimento di Fisica,
[2] Università di Roma “Tor Vergata”,undefined
[3] INFN Sezione di Roma “Tor Vergata”,undefined
关键词
Superstrings and Heterotic Strings; Intersecting branes models; D-branes; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We show that 4-point vector boson one-loop amplitudes, computed in [1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SUSY in D = 4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (−+++). In the MHV case (−−++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviours and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D = 4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1,2 $$\end{document} sectors.
引用
收藏
相关论文
共 50 条
  • [21] One-loop correction of the tachyon action in boundary superstring field theory
    Alishahiha, M
    PHYSICS LETTERS B, 2001, 510 (1-4) : 285 - 294
  • [22] ONE-LOOP MASS SHIFTS IN O(32) OPEN SUPERSTRING THEORY
    YAMAMOTO, H
    PROGRESS OF THEORETICAL PHYSICS, 1988, 79 (01): : 189 - 208
  • [23] Triangular tessellations of one-loop scattering amplitudes in φ3 theory
    Das, Abhijit B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, 233 (11-12): : 2001 - 2036
  • [24] ONE-LOOP FINITENESS IN O(32) OPEN-SUPERSTRING THEORY
    FRAMPTON, PH
    MOXHAY, P
    NG, YJ
    PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2107 - 2110
  • [25] COMMENT ON THE ONE-LOOP FINITENESS IN TYPE-I SUPERSTRING THEORY
    YAMAMOTO, H
    NAGAHAMA, Y
    NAKAZAWA, N
    PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (05): : 1150 - 1153
  • [26] New Method for One-Loop Scattering Amplitudes in Field Theory
    Ossola, Giovanni
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 196 - 200
  • [27] Twistor space structure of one-loop amplitudes in gauge theory
    Cachazo, F
    Svrcek, P
    Witten, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [28] One-loop gluon amplitudes in AdS
    Alday, Luis F.
    Bissi, Agnese
    Zhou, Xinan
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [29] ONE-LOOP MULTIPHOTON HELICITY AMPLITUDES
    MAHLON, G
    PHYSICAL REVIEW D, 1994, 49 (05): : 2197 - 2210
  • [30] One-loop amplitudes on the Riemann sphere
    Yvonne Geyer
    Lionel Mason
    Ricardo Monteiro
    Piotr Tourkine
    Journal of High Energy Physics, 2016