Bifurcation and Chaos in the Duffing Oscillator with a PID Controller

被引:0
|
作者
Fangsen Cui
C. H. Chew
Jianxue Xu
Yuanli Cai
机构
[1] National University of Singapore,Department of Mechanical and Production Engineering
[2] Xi'an Jiaotong University,Institute of Engineering Mechanics
来源
Nonlinear Dynamics | 1997年 / 12卷
关键词
Bifurcation; chaos; Duffingoscillator; fractal basin boundary; PIDcontroller;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in this paper the bifurcation, stability and chaos of the non-linear Duffing oscillator with a PID controller. Hopf bifurcation can occur and we show that there is a global stable fixed point. The PID controller works well in some fields of the parameter space, but in other fields of the parameter space, or if the reference input is not equal to zero, chaos is common for hard spring type system and so is fractal basin boundary for soft spring system. The Melnikov method is used to obtain the criterion of fractal basin boundary.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 50 条
  • [31] Design and Simulation of Controller for Chaotic Duffing Oscillator
    Liu, Meiju
    Liu, Jian
    Han, Fengyan
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 193 - 196
  • [32] BIFURCATION STRUCTURE OF THE DUFFING OSCILLATOR WITH ASYMMETRICAL POTENTIAL WELL
    HUANG, JC
    KAO, YH
    WANG, CS
    GOU, YS
    PHYSICS LETTERS A, 1989, 136 (03) : 131 - 138
  • [33] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    J.H. Yang
    Miguel A.F. Sanjuán
    H.G. Liu
    The European Physical Journal B, 2015, 88
  • [34] PERIODIC MOTIONS AND BIFURCATION TREES IN A PARAMETRIC DUFFING OSCILLATOR
    Luo, Albert C. J.
    Ma, Haolin
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 6, 2017,
  • [35] Bifurcation structure of the double-well Duffing oscillator
    Kim, SY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (17): : 1801 - 1813
  • [36] Bifurcation and resonance in a fractional Mathieu-Duffing oscillator
    Yang, J. H.
    Sanjuan, Miguel A. F.
    Liu, H. G.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (11): : 1 - 8
  • [37] THE BIFURCATION TO HOMOCLINIC TORI IN THE QUASIPERIODICALLY FORCED DUFFING OSCILLATOR
    IDE, K
    WIGGINS, S
    PHYSICA D-NONLINEAR PHENOMENA, 1989, 34 (1-2) : 169 - 182
  • [38] Bifurcation control of a Duffing oscillator using pole placement
    Ghandchi-Tehrani, Maryam
    Wilmshurst, Lawrence I.
    Elliott, Stephen J.
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (14) : 2838 - 2851
  • [39] Bifurcation Control for a Duffing Oscillator with Delayed Velocity Feedback
    Chang-Jin Xu
    Yu-Sen Wu
    International Journal of Automation and Computing, 2016, 13 (06) : 596 - 606
  • [40] HOMOCLINIC BIFURCATION SETS OF THE PARAMETRICALLY DRIVEN DUFFING OSCILLATOR
    PARTHASARATHY, S
    PHYSICAL REVIEW A, 1992, 46 (04) : 2147 - 2150