Bifurcation and Chaos in the Duffing Oscillator with a PID Controller

被引:0
|
作者
Fangsen Cui
C. H. Chew
Jianxue Xu
Yuanli Cai
机构
[1] National University of Singapore,Department of Mechanical and Production Engineering
[2] Xi'an Jiaotong University,Institute of Engineering Mechanics
来源
Nonlinear Dynamics | 1997年 / 12卷
关键词
Bifurcation; chaos; Duffingoscillator; fractal basin boundary; PIDcontroller;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in this paper the bifurcation, stability and chaos of the non-linear Duffing oscillator with a PID controller. Hopf bifurcation can occur and we show that there is a global stable fixed point. The PID controller works well in some fields of the parameter space, but in other fields of the parameter space, or if the reference input is not equal to zero, chaos is common for hard spring type system and so is fractal basin boundary for soft spring system. The Melnikov method is used to obtain the criterion of fractal basin boundary.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 50 条
  • [1] Bifurcation and chaos in the duffing oscillator with a PID controller
    Cui, FS
    Chew, CH
    Xu, JX
    Cai, YL
    NONLINEAR DYNAMICS, 1997, 12 (03) : 251 - 262
  • [2] Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator
    Luo A.C.J.
    Ma H.
    International Journal of Dynamics and Control, 2018, 6 (2) : 425 - 458
  • [3] Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping
    Sharma, Anjali
    Patidar, Vinod
    Purohit, G.
    Sud, K. K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2254 - 2269
  • [4] Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force
    Ravichandran, V.
    Chinnathambi, V.
    Rajasekar, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 : 223 - 236
  • [5] Bifurcation and chaos in some relative rotation systems with Mathieu-Duffing oscillator
    Hou Dong-Xiao
    Zhao Hong-Xu
    Liu Bin
    ACTA PHYSICA SINICA, 2013, 62 (23)
  • [6] TRANSITION TO CHAOS IN THE DUFFING OSCILLATOR
    NOVAK, S
    FREHLICH, RG
    PHYSICAL REVIEW A, 1982, 26 (06): : 3660 - 3663
  • [7] ON THE OCCURRENCE OF CHAOS IN DUFFING OSCILLATOR
    AWREJCEWICZ, J
    JOURNAL OF SOUND AND VIBRATION, 1986, 108 (01) : 176 - 178
  • [8] STRUCTURE IN THE BIFURCATION DIAGRAM OF THE DUFFING OSCILLATOR
    GILMORE, R
    MCCALLUM, JWL
    PHYSICAL REVIEW E, 1995, 51 (02): : 935 - 956
  • [9] Experimental chaos detection in the Duffing oscillator
    Fouda, J. S. Armand Eyebe
    Bodo, Bertrand
    Djeufa, Guy M. D.
    Sabat, Samrat L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 33 : 259 - 269
  • [10] Chaos control in the uncertain Duffing oscillator
    Bowong, S
    Kakmeni, FMM
    Dimi, JL
    JOURNAL OF SOUND AND VIBRATION, 2006, 292 (3-5) : 869 - 880