共 50 条
Balanced metrics on twisted Higgs bundles
被引:0
|作者:
Mario Garcia-Fernandez
Julius Ross
机构:
[1] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),Department of Pure Mathematics and Mathematical Statistics
[2] University of Cambridge,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A twisted Higgs bundle on a Kähler manifold X is a pair (E,ϕ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(E,\phi )$$\end{document} consisting of a holomorphic vector bundle E and a holomorphic bundle morphism ϕ:M⊗E→E\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi :M \otimes E \rightarrow E$$\end{document} for some holomorphic vector bundle M. Such objects were first considered by Hitchin when X is a curve and M is the tangent bundle of X, and also by Simpson for higher dimensional base. The Hitchin–Kobayashi correspondence for such pairs states that (E,ϕ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(E,\phi )$$\end{document} is polystable if and only if E admits a hermitian metric solving the Hitchin equation. This correspondence is a powerful tool to decide whether there exists a solution of the equation, but it provides little information as to the actual solution. In this paper we study a quantization of this problem that is expressed in terms of finite dimensional data and balanced metrics that give approximate solutions to the Hitchin equation. Motivation for this study comes from work of Donagi–Wijnholt (JHEP 05:068, 2013) concerning balanced metrics for the Vafa–Witten equations.
引用
收藏
页码:1429 / 1471
页数:42
相关论文