Balanced metrics on twisted Higgs bundles

被引:0
|
作者
Mario Garcia-Fernandez
Julius Ross
机构
[1] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),Department of Pure Mathematics and Mathematical Statistics
[2] University of Cambridge,undefined
来源
Mathematische Annalen | 2017年 / 367卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A twisted Higgs bundle on a Kähler manifold X is a pair (E,ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\phi )$$\end{document} consisting of a holomorphic vector bundle E and a holomorphic bundle morphism ϕ:M⊗E→E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi :M \otimes E \rightarrow E$$\end{document} for some holomorphic vector bundle M. Such objects were first considered by Hitchin when X is a curve and M is the tangent bundle of X, and also by Simpson for higher dimensional base. The Hitchin–Kobayashi correspondence for such pairs states that (E,ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\phi )$$\end{document} is polystable if and only if E admits a hermitian metric solving the Hitchin equation. This correspondence is a powerful tool to decide whether there exists a solution of the equation, but it provides little information as to the actual solution. In this paper we study a quantization of this problem that is expressed in terms of finite dimensional data and balanced metrics that give approximate solutions to the Hitchin equation. Motivation for this study comes from work of Donagi–Wijnholt (JHEP 05:068, 2013) concerning balanced metrics for the Vafa–Witten equations.
引用
收藏
页码:1429 / 1471
页数:42
相关论文
共 50 条
  • [1] Balanced metrics on twisted Higgs bundles
    Garcia-Fernandez, Mario
    Ross, Julius
    MATHEMATISCHE ANNALEN, 2017, 367 (3-4) : 1429 - 1471
  • [2] Counting twisted Higgs bundles
    Mozgovoy, S.
    O'gorman, R.
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (05) : 1551 - 1570
  • [3] Higgs bundles twisted by a vector bundle
    Gallego, Guillermo
    Garcia-Prada, Oscar
    Narasimhan, M. S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (09)
  • [4] Twisted argyle quivers and Higgs bundles
    Rayan, Steven
    Sundbo, Evan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 146 : 1 - 32
  • [5] The balanced metrics and cscK metrics on polyball bundles
    Zhiming Feng
    Zhenhan Tu
    Analysis and Mathematical Physics, 2023, 13
  • [6] The balanced metrics and cscK metrics on polyball bundles
    Feng, Zhiming
    Tu, Zhenhan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [7] BALANCED METRICS ON HOMOGENEOUS VECTOR BUNDLES
    Mossa, Roberto
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (07) : 1433 - 1438
  • [8] Metrics on semistable and numerically effective Higgs bundles
    Bruzzo, Ugo
    Grana Otero, Beatriz
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 612 : 59 - 79
  • [9] The balanced metrics and cscK metrics on certain holomorphic ball bundles
    Feng, Zhiming
    Tu, Zhenhan
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 174
  • [10] Metrics on twisted pluricanonical bundles and finite generation of twisted canonical rings
    He, Bojie
    Zhou, Xiangyu
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (02) : 451 - 485