Learning a hierarchical image manifold for Web image classification

被引:0
|
作者
Rong Zhu
Min Yao
Li-hua Ye
Jun-ying Xuan
机构
[1] Jiaxing University,School of Information Engineering
[2] Zhejiang University,School of Computer Science and Technology
关键词
Web image classification; Manifold learning; Image manifold; Semantic granularity; Distance measure; TP391;
D O I
暂无
中图分类号
学科分类号
摘要
Image classification is an essential task in content-based image retrieval. However, due to the semantic gap between low-level visual features and high-level semantic concepts, and the diversification of Web images, the performance of traditional classification approaches is far from users’ expectations. In an attempt to reduce the semantic gap and satisfy the urgent requirements for dimensionality reduction, high-quality retrieval results, and batch-based processing, we propose a hierarchical image manifold with novel distance measures for calculation. Assuming that the images in an image set describe the same or similar object but have various scenes, we formulate two kinds of manifolds, object manifold and scene manifold, at different levels of semantic granularity. Object manifold is developed for object-level classification using an algorithm named extended locally linear embedding (ELLE) based on intra- and inter-object difference measures. Scene manifold is built for scene-level classification using an algorithm named locally linear submanifold extraction (LLSE) by combining linear perturbation and region growing. Experimental results show that our method is effective in improving the performance of classifying Web images.
引用
收藏
页码:719 / 735
页数:16
相关论文
共 50 条
  • [21] SPD Manifold Deep Metric Learning for Image Set Classification
    Wang, Rui
    Wu, Xiao-Jun
    Chen, Ziheng
    Hu, Cong
    Kittler, Josef
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 8924 - 8938
  • [22] SPATIAL CONTEXT DRIVEN MANIFOLD LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Y.
    Yang, H. L.
    Lunga, D.
    Prasad, S.
    Crawford, M.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [23] Adaptive group Riemannian manifold learning for hyperspectral image classification
    Tao H.
    Xie X.
    Tang R.
    Hou Y.
    Li J.
    Feng W.
    Chen Y.
    Xu G.
    International Journal of Wireless and Mobile Computing, 2022, 22 (3-4) : 300 - 309
  • [24] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    Neurocomputing, 2021, 442 : 236 - 248
  • [25] Deep Metric Learning on the SPD Manifold for Image Set Classification
    Wang, Rui
    Wu, Xiao-Jun
    Xu, Tianyang
    Hu, Cong
    Kittler, Josef
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 663 - 680
  • [26] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    NEUROCOMPUTING, 2021, 442 : 236 - 248
  • [27] Histopathology Image Classification Using Deep Manifold Contrastive Learning
    Tan, Jing Wei
    Jeong, Won-Ki
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 683 - 692
  • [28] SMALE: Hyperspectral Image Classification via Superpixels and Manifold Learning
    Liao, Nannan
    Gong, Jianglei
    Li, Wenxing
    Li, Cheng
    Zhang, Chaoyan
    Guo, Baolong
    REMOTE SENSING, 2024, 16 (18)
  • [29] Image classification with manifold learning for out-of-sample data
    Han, Yahong
    Xu, Zhongwen
    Ma, Zhigang
    Huang, Zi
    SIGNAL PROCESSING, 2013, 93 (08) : 2169 - 2177
  • [30] A NOVEL MANIFOLD LEARNING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Chen, Pengxu
    Zhu, Mingcang
    Huang, Zhiqin
    Lu, Yufeng
    Feng, Yicong
    Li, Jiang
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,