Description of spatial characteristics of elastic processes within the formalism of the Wigner functions

被引:0
|
作者
A. N. Vall
I. A. Perevalova
M. V. Polyakov
O. N. Soldatenko
机构
[1] Irkutsk State University,
[2] Institute of Theoretical Physics at Ruhr University,undefined
来源
Russian Physics Journal | 2011年 / 54卷
关键词
elastic processes; Wigner’s function; quasi-probability distribution; algebra SO(2.1); two-particle collisions;
D O I
暂无
中图分类号
学科分类号
摘要
Definition of the Wigner function is given and its application to a description of elastic scattering processes is analyzed. A new element of the well-known formalism is a choice of the phase space in which the Wigner function is assigned as a quasi-probability distribution. This is a 4-dimensional space of canonically conjugated quantities – transverse momentum of the scattered particle and the projection of the closest particle approach vector onto the plane perpendicular to the incident particle momentum. Exact expression for the average squared radius of the region of scattered particle production through the scattering amplitude is presented.
引用
收藏
页码:47 / 53
页数:6
相关论文
共 50 条
  • [41] Analysis of nitrogen metabolism processes and a description of structure characteristics
    Zhang, Yan
    Lu, Hanjing
    Zhang, Xiaolin
    ECOLOGICAL MODELLING, 2017, 357 : 47 - 54
  • [42] Properties of multi-particle Green's and vertex functions within Keldysh formalism
    Jakobs, Severin G.
    Pletyukhov, Mikhail
    Schoeller, Herbert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (10)
  • [43] Description of quantum-mechanical motion by using the formalism of non-Markov stochastic processes
    Skorobogatov, GA
    Svertilov, SI
    PHYSICS OF ATOMIC NUCLEI, 1999, 62 (02) : 250 - 255
  • [44] STABILITY AND CHARACTERISTICS OF SPATIAL DESCRIPTION PARAMETERS FOR NEMATODE POPULATIONS
    FERRIS, H
    MULLENS, TA
    FOORD, KE
    JOURNAL OF NEMATOLOGY, 1990, 22 (04) : 427 - 439
  • [45] Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism
    Agarwal, Naman
    Yoon, Jiho
    Garcia-Caurel, Enric
    Novikova, Tatiana
    Vanel, Jean-Charles
    Pierangelo, Angelo
    Bykov, Alexander
    Popov, Alexey
    Meglinski, Igor
    Ossikovski, Razvigor
    OPTICS LETTERS, 2015, 40 (23) : 5634 - 5637
  • [46] Description of the friction behavior of polymeric melts with the account of their elastic characteristics
    Kougiya, F.A.
    Trenie i Iznos, 2003, 24 (06): : 609 - 612
  • [47] Elastic interaction of point defects with an edge dislocation loop within the Green’s function formalism
    P. N. Ostapchuk
    O. G. Trotsenko
    Physics of the Solid State, 2016, 58 : 1810 - 1818
  • [48] Elastic interaction of point defects with an edge dislocation loop within the Green's function formalism
    Ostapchuk, P. N.
    Trotsenko, O. G.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1810 - 1818
  • [49] DETECTABILITY FUNCTIONS IN OBSERVING SPATIAL POINT-PROCESSES
    THOMPSON, SK
    RAMSEY, FL
    BIOMETRICS, 1987, 43 (02) : 355 - 362
  • [50] Partial characteristics for marked spatial point processes
    Eckardt, M.
    Mateu, J.
    ENVIRONMETRICS, 2019, 30 (06)