A generalization of the Gagliardo inequality

被引:0
|
作者
Maksimov D.V. [1 ]
机构
[1] Russian State Pedagogical University, St.Petersburg
关键词
Compact Support; Linear Independence; Independent Vector; Multidimensional Case; Complete Order;
D O I
10.1007/s10958-008-0032-1
中图分类号
学科分类号
摘要
Consider functions u1, u2,..., un ∈ D(ℝk) and assume that we are given a certain set of linear combinations of the form Σi, j a ij (l) ∂jui. Sufficient conditions in terms of coefficients a ij (l) are indicated under which the norms ∥ u i∥Lk/k - 1 are controlled in terms of the L 1-norms of these linear combinations. These conditions are mostly transparent if k = 2. The classical Gagliardo inequality corresponds to a single function u1 = u and the collection of its partial derivatives ∂1u,..., ∂ku. Bibliography: 2 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:850 / 859
页数:9
相关论文
共 50 条
  • [31] A Generalization of the Rozovskii Inequality
    Gabdullin R.A.
    Makarenko V.A.
    Shevtsova I.G.
    Journal of Mathematical Sciences, 2019, 237 (6) : 775 - 781
  • [32] GENERALIZATION ON KANTOROVICH INEQUALITY
    Fujii, Masatoshi
    Zuo, Hongliang
    Cheng, Nan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 517 - 522
  • [33] ON A GENERALIZATION OF AN INEQUALITY OF BOHR
    Ivanov, B. F.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2013, 2 (02): : 20 - +
  • [34] GENERALIZATION OF AN INEQUALITY OF LEVY
    PETROV, VV
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (01): : 140 - 144
  • [35] On a generalization of the entropy inequality
    Nasibov, Sh. M.
    MATHEMATICAL NOTES, 2016, 99 (1-2) : 304 - 307
  • [36] A GENERALIZATION OF WIELANDT INEQUALITY
    BOULLION, TL
    ODELL, PL
    TEXAS JOURNAL OF SCIENCE, 1969, 20 (03): : 255 - &
  • [37] GENERALIZATION OF RENNIES INEQUALITY
    GOLDMAN, AJ
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1964, B 68 (02): : 59 - +
  • [38] A GENERALIZATION OF TRIANGLE INEQUALITY
    BOUWSMA, WD
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (09): : 1072 - &
  • [39] GENERALIZATION OF A MINKOWSKI INEQUALITY
    FRECHET, M
    BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1957, 35 (02): : 99 - 103
  • [40] Generalization of a matrix inequality
    Anderson, TW
    ECONOMETRIC THEORY, 1997, 13 (03) : 466 - 466