On Hyperbolic Affine Generalized Infinite Iterated Function Systems

被引:0
|
作者
Alexandru Mihail
Silviu-Aurelian Urziceanu
机构
[1] Faculty of Mathematics and Computer Science University of Bucharest,
[2] Romania,undefined
[3] Faculty of Mathematics and Computer Science University of Piteşti,undefined
[4] Romania,undefined
来源
Results in Mathematics | 2020年 / 75卷
关键词
Affine generalized infinite iterated function system (AGIIFS); hyperbolic AGIIFS; -hyperbolic AGIIFS; attractor; strictly topologically contractive AGIIFS; uniformly point-fibred AGIIFS; Primary 28A80; Secondary 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide alternative characterizations of hyperbolic affine generalized infinite iterated function systems. More precisely, we prove that, for such a system F=((X,.),(fi)i∈I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}=((X,\left\| .\right\| ),(f_{i})_{i\in I})$$\end{document}, among others, the following statements are equivalent: (a) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is hyperbolic. (b) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {F}}$$\end{document} has attractor. (c) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is strictly topologically contractive. (d) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is uniformly point-fibred. In this way we generalize the result from the paper by Miculescu and Mihail (J Math Anal Appl 407:56–68, 2013). More equivalent statements are given for the particular case when I is finite and X is finite dimensional.
引用
收藏
相关论文
共 50 条