A simulation model of plant invasion: long-distance dispersal determines the pattern of spread

被引:0
|
作者
Nana Nehrbass
Eckart Winkler
Jana Müllerová
Jan Pergl
Petr Pyšek
Irena Perglová
机构
[1] Centre for Environmental Research UFZ Leipzig,Department of Ecological Modelling
[2] Academy of Science of the Czech Republic,Institute of Botany
来源
Biological Invasions | 2007年 / 9卷
关键词
Individual-based modelling; Invasion history; Local spread; Long-distance dispersal; Land-use change;
D O I
暂无
中图分类号
学科分类号
摘要
Mechanisms and consequences of biological invasions are a global issue. Yet, one of the key aspects, the initial phase of invasion, is rarely observed in detail. Data from aerial photographs covering the spread of Heracleum mantegazzianum (Apiaceae, native to Caucasus) on a local scale of hectares in the Czech Republic from the beginning of invasion were used as an input for an individual-based model (IBM), based on small-scale and short-time data. To capture the population development inferred from the photographs, long-distance seed dispersal, changes in landscape structures and suitability of landscape elements to invasion by H. mantegazzianum were implemented in the model. The model was used to address (1) the role of long-distance dispersal in regional invasion dynamics, and (2) the effect of land-use changes on the progress of the invasion. Simulations showed that already small fractions of seed subjected to long-distance dispersal, as determined by systematic comparison of field data and modelling results, had an over-proportional effect on the spread of this species. The effect of land-use changes on the simulated course of invasion depends on the actual level of habitat saturation; it is larger for populations covering a high proportion of available habitat area than for those in the initial phase of invasion. Our results indicate how empirical field data and model outputs can be linked more closely with each other to improve the understanding of invasion dynamics. The multi-level, but nevertheless simple structure of our model suggests that it can be used for studying the spread of similar species invading in comparable landscapes.
引用
收藏
页码:383 / 395
页数:12
相关论文
共 50 条
  • [41] Rapid, Long-Distance Dispersal by Pumice Rafting
    Bryan, Scott E.
    Cook, Alex G.
    Evans, Jason P.
    Hebden, Kerry
    Hurrey, Lucy
    Colls, Peter
    Jell, John S.
    Weatherley, Dion
    Firn, Jennifer
    PLOS ONE, 2012, 7 (07):
  • [42] Mechanisms of long-distance dispersal of seeds by wind
    Nathan, R
    Katul, GG
    Horn, HS
    Thomas, SM
    Oren, R
    Avissar, R
    Pacala, SW
    Levin, SA
    NATURE, 2002, 418 (6896) : 409 - 413
  • [43] Long-distance dispersal of wolves in the Dauria ecoregion
    Anastasia Kirilyuk
    Vadim E. Kirilyuk
    Rong Ke
    Mammal Research, 2020, 65 : 639 - 646
  • [44] LONG-DISTANCE WIND DISPERSAL OF TREE SEEDS
    GREENE, DF
    JOHNSON, EA
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1995, 73 (07): : 1036 - 1045
  • [45] Long-distance dispersal of wolves in the Dauria ecoregion
    Kirilyuk, Anastasia
    Kirilyuk, Vadim E.
    Ke, Rong
    MAMMAL RESEARCH, 2020, 65 (04) : 639 - 646
  • [46] LONG-DISTANCE DISPERSAL AND SELF-INCOMPATIBILITY
    PANDEY, KK
    NEW ZEALAND JOURNAL OF BOTANY, 1979, 17 (02) : 225 - 226
  • [47] LONG-DISTANCE DISPERSAL OF REEF CORALS BY RAFTING
    JOKIEL, PL
    CORAL REEFS, 1984, 3 (02) : 113 - 116
  • [48] Long-distance dispersal potential in a marine macrophyte
    Harwell, MC
    Orth, RJ
    ECOLOGY, 2002, 83 (12) : 3319 - 3330
  • [49] The importance of long-distance dispersal in biodiversity conservation
    Trakhtenbrot, A
    Nathan, R
    Perry, G
    Richardson, DM
    DIVERSITY AND DISTRIBUTIONS, 2005, 11 (02) : 173 - 181
  • [50] Long-distance dispersal: a framework for hypothesis testing
    Gillespie, Rosemary G.
    Baldwin, Bruce G.
    Waters, Jonathan M.
    Fraser, Ceridwen I.
    Nikula, Raisa
    Roderick, George K.
    TRENDS IN ECOLOGY & EVOLUTION, 2012, 27 (01) : 47 - 56