Clustering-based data placement in cloud computing: a predictive approach

被引:0
|
作者
Mokhtar Sellami
Haithem Mezni
Mohand Said Hacid
Mohamed Moshen Gammoudi
机构
[1] University of Jendouba,
[2] Taibah University,undefined
[3] SMART Lab,undefined
[4] ISG de Tunis,undefined
[5] Univ. Lyon,undefined
[6] University Claude Bernard Lyon 1,undefined
[7] LIRIS,undefined
[8] Higher Institute of Multimedia Arts of Manouba,undefined
[9] RIADI,undefined
来源
Cluster Computing | 2021年 / 24卷
关键词
Data placement; Resource usage; Intensive jobs; Prediction; Kernel Density Estimation; Fuzzy FCA; SOA; Autonomic computing;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, cloud computing environments have become a natural choice to host and process a huge volume of data. The combination of cloud computing and big data frameworks is an effective way to run data-intensive applications and tasks. Also, an optimal arrangement of data partitions can improve the tasks executions, which is not the case in most big data frameworks. For example, the default distribution of data partitions in Hadoop-based clouds causes several problems, which are mainly related to the load balancing and the resource usage. In addition, most existing data placement solutions are static and lack precision in the placement of data partitions. To overcome these issues, we propose a data placement approach based on the prediction of the future resources usage. We exploit Kernel Density Estimation (KDE) and Fuzzy FCA techniques to, first, forecast the workers’ and tasks’ future resource consumption and, second, cluster data partitions and intensive jobs according to the estimated resource usage. Fuzzy FCA is also used to exclude partitions and jobs that require less resources, which will reduce the needless migrations. To allow monitoring and predicting the workers’ states and the data partitions’ consumption, we modeled the big data cluster as an autonomic service-based system. The obtained results have shown that our solution outperformed existing approaches in terms of migrations rate and resource consumption.
引用
收藏
页码:3311 / 3336
页数:25
相关论文
共 50 条
  • [31] A clustering-based approach to vortex extraction
    Deng, Liang
    Wang, Yueqing
    Chen, Cheng
    Liu, Yang
    Wang, Fang
    Liu, Jie
    JOURNAL OF VISUALIZATION, 2020, 23 (03) : 459 - 474
  • [32] Clustering-based privacy preserving anonymity approach for table data sharing
    Piao, Chunhui
    Liu, Liping
    Shi, Yajuan
    Jiang, Xuehong
    Song, Ning
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2020, 11 (04) : 768 - 773
  • [33] A Hybrid Approach for Clustering-based Data Aggregation in Wireless Sensor Networks
    Jung, Woo-Sung
    Lim, Keun-Woo
    Ko, Young-Bae
    Park, Sang-Joon
    THIRD INTERNATIONAL CONFERENCE ON DIGITAL SOCIETY: ICDS 2009, PROCEEDINGS, 2009, : 112 - 117
  • [34] ICN clustering-based approach for VANETs
    Lamia Chaari Fourati
    Samiha Ayed
    Mohamed Ali Ben Rejeb
    Annals of Telecommunications, 2021, 76 : 745 - 757
  • [35] ICN clustering-based approach for VANETs
    Fourati, Lamia Chaari
    Ayed, Samiha
    Ben Rejeb, Mohamed Ali
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (9-10) : 745 - 757
  • [36] A Clustering-Based Approach to Ontology Alignment
    Duan, Songyun
    Fokoue, Achille
    Srinivas, Kavitha
    Byrne, Brian
    SEMANTIC WEB - ISWC 2011, PT I, 2011, 7031 : 146 - +
  • [37] ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application
    Hu, Rong
    Dou, Wanchun
    Liu, Jianxun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (03) : 302 - 313
  • [38] A clustering-based approach for classifying data streams using graph matching
    Du, Yuxin
    He, Mingshu
    Wang, Xiaojuan
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [39] A clustering-based approach to vortex extraction
    Liang Deng
    Yueqing Wang
    Cheng Chen
    Yang Liu
    Fang Wang
    Jie Liu
    Journal of Visualization, 2020, 23 : 459 - 474
  • [40] Clustering-based privacy preserving anonymity approach for table data sharing
    Chunhui Piao
    Liping Liu
    Yajuan Shi
    Xuehong Jiang
    Ning Song
    International Journal of System Assurance Engineering and Management, 2020, 11 : 768 - 773