Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips

被引:0
|
作者
Leilei Lan
Haorun Yao
Guoqun Li
Xingce Fan
Mingze Li
Teng Qiu
机构
[1] Southeast University,School of Physics
来源
Nano Research | 2022年 / 15卷
关键词
structural engineering; transition-metal nitrides (TMN); surface-enhanced Raman scattering (SERS); nanocavity; heterostructure;
D O I
暂无
中图分类号
学科分类号
摘要
Noble-metal-free surface-enhanced Raman scattering (SERS) substrates have attracted great attention for their abundant sources, good signal uniformity, superior biocompatibility, and high chemical stability. However, the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications. Herein, we propose a general strategy to fabricate a series of planar transition-metal nitride (TMN) SERS chips via an ambient temperature sputtering deposition route. For the first time, tungsten nitride (WN) and tantalum nitride (TaN) are used as SERS materials. These planar TMN chips show remarkable Raman enhancement factors (EFs) with ∼ 105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules. Further, structural engineering of these TMN chips is used to improve their SERS activity. Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure, the Raman EF of WN nanocavity chips could be greatly improved to ∼ 1.29 × 107, which is an order of magnitude higher than that of planar chips. Moreover, we also design the WN/monolayer MoS2 heterostructure chips. With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure, a ∼ 1.94 × 107 level EF and a 5 × 10−10 M level detection limit could be achieved. Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.
引用
收藏
页码:3794 / 3803
页数:9
相关论文
共 50 条
  • [32] A Review on Surface-Enhanced Raman Scattering
    Pilot, Roberto
    Signorini, Raffaella
    Durante, Christian
    Orian, Laura
    Bhamidipati, Manjari
    Fabris, Laura
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [33] Surface-enhanced Raman scattering holography
    Matz Liebel
    Nicolas Pazos-Perez
    Niek F. van Hulst
    Ramon A. Alvarez-Puebla
    Nature Nanotechnology, 2020, 15 : 1005 - 1011
  • [34] SURFACE-ENHANCED RAMAN-SCATTERING
    BOERIO, FJ
    THIN SOLID FILMS, 1989, 181 : 423 - 433
  • [35] Surface-enhanced Raman scattering and biophysics
    Kneipp, K
    Kneipp, H
    Itzkan, I
    Dasari, RR
    Feld, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) : R597 - R624
  • [36] Surface-Enhanced Raman Scattering of Microorganisms
    Premasiri, W. R.
    Moir, D. T.
    Klempner, M. S.
    Ziegler, L. D.
    NEW APPROACHES IN BIOMEDICAL SPECTROSCOPY, 2007, 963 : 164 - 185
  • [37] Surface-enhanced Raman scattering of flavonoids
    Jurasekova, Z.
    Garcia-Ramos, J. V.
    Domingo, C.
    Sanchez-Cortes, S.
    JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) : 1239 - 1241
  • [38] Surface-enhanced Raman scattering holography
    Liebel, Matz
    Pazos-Perez, Nicolas
    van Hulst, Niek F.
    Alvarez-Puebla, Ramon A.
    NATURE NANOTECHNOLOGY, 2020, 15 (12) : 1005 - U33
  • [39] Surface-Enhanced Raman Scattering of Proteins
    Kahraman, Mehmet
    Sur, Ilknur
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 1055 - 1056
  • [40] Surface-enhanced Raman scattering of hydroxyproline
    Guerrero, Ariel R.
    Aroca, Ricardo F.
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (04) : 478 - 481