Detecting localized homogeneous anomalies over spatio-temporal data

被引:0
|
作者
Aditya Telang
P. Deepak
Salil Joshi
Prasad Deshpande
Ranjana Rajendran
机构
[1] IBM Research,
[2] University of California,undefined
来源
Data Mining and Knowledge Discovery | 2014年 / 28卷
关键词
Outlier Detection; Homogeneous Region; Anomaly Detection; Gini Index; Homogeneous Cluster;
D O I
暂无
中图分类号
学科分类号
摘要
The last decade has witnessed an unprecedented growth in availability of data having spatio-temporal characteristics. Given the scale and richness of such data, finding spatio-temporal patterns that demonstrate significantly different behavior from their neighbors could be of interest for various application scenarios such as—weather modeling, analyzing spread of disease outbreaks, monitoring traffic congestions, and so on. In this paper, we propose an automated approach of exploring and discovering such anomalous patterns irrespective of the underlying domain from which the data is recovered. Our approach differs significantly from traditional methods of spatial outlier detection, and employs two phases—(i) discovering homogeneous regions, and (ii) evaluating these regions as anomalies based on their statistical difference from a generalized neighborhood. We evaluate the quality of our approach and distinguish it from existing techniques via an extensive experimental evaluation.
引用
收藏
页码:1480 / 1502
页数:22
相关论文
共 50 条
  • [21] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [22] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [23] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [24] Spatio-temporal gradient analysis for detecting defects
    Teramoto, K
    Tsuruta, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (08): : 2037 - 2044
  • [25] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [26] Spatio-temporal Range Searching over Compressed Kinetic Sensor Data
    Friedler, Sorelle A.
    Mount, David M.
    ALGORITHMS-ESA 2010, 2010, 6346 : 386 - 397
  • [27] Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies
    Jimenez, Juan C.
    Barichivich, Jonathan
    Mattar, Cristian
    Takahashi, Ken
    Santamaria-Artigas, Andres
    Sobrino, Jose A.
    Malhi, Yadvinder
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 373 (1760)
  • [28] Spatio-temporal trend analysis of projected precipitation data over Rwanda
    Muhire, I.
    Tesfamichael, S. G.
    Ahmed, F.
    Minani, E.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 131 (1-2) : 671 - 680
  • [29] Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data
    Wu, Guojun
    Ding, Yichen
    Li, Yanhua
    Bao, Jie
    Zheng, Yu
    Luo, Jun
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1283 - 1294
  • [30] Spatio-temporal trend analysis of projected precipitation data over Rwanda
    I. Muhire
    S.G. Tesfamichael
    F. Ahmed
    E. Minani
    Theoretical and Applied Climatology, 2018, 131 : 671 - 680