Electric-magnetic deformations of D = 4 gauged supergravities

被引:0
|
作者
Gianluca Inverso
机构
[1] Nikhef,
关键词
Extended Supersymmetry; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss duality orbits and symplectic deformations of D = 4 gauged supergravity theories, with focus on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} ≥ 2. We provide a general constructive framework for computing symplectic deformations starting from a reference gauging, and apply it to many interesting examples. We prove that no continuous deformations are allowed for Fayet-Iliopoulos gaugings of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 STU model and in particular that any ω deformation is classically trivial. We further show that although in the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 6 truncation of SO(8) maximal supergravity the ω parameter can be dualized away, in the ‘twin’ N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 truncation ω is preserved and a second, new deformation appears. We further provide a full classification and appropriate duality orbits of certain N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauged supergravities, including all inequivalent SO(4)2 gaugings and several non-compact forms.
引用
收藏
相关论文
共 50 条
  • [21] Non-Abelian electric-magnetic duality with supersymmetry in 4D and 10D
    Nishino, Hitoshi
    Rajpoot, Subhash
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [22] Gauged D=9 supergravities and Scherk-Schwarz reduction
    Hull, CM
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) : 509 - 516
  • [23] Non-unimodular reductions and N=4 gauged supergravities
    Petropoulos, P. M.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 752 - 760
  • [24] GLOBAL ASPECTS OF ELECTRIC-MAGNETIC DUALITY
    VERLINDE, E
    NUCLEAR PHYSICS B, 1995, 455 (1-2) : 211 - 225
  • [25] Electric-magnetic duality in noncommutative geometry
    Lizzi, F
    Szabo, RJ
    PHYSICS LETTERS B, 1998, 417 (3-4) : 303 - 311
  • [26] Variable resolution electric-magnetic tomography
    Valdes-Sosa, P
    Marti, F
    Garcia, F
    Casanova, R
    BIOMAG 96: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON BIOMAGNETISM, VOLS I & II, 2000, : 373 - 376
  • [27] 6d → 5d → 4d reduction of BPS attractors in flat gauged supergravities
    Hristov, Kiril
    Rota, Andrea
    NUCLEAR PHYSICS B, 2015, 897 : 213 - 228
  • [28] Electric-Magnetic Duality and Topological Insulators
    Karch, A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (17)
  • [29] Soft charges and electric-magnetic duality
    V. Hosseinzadeh
    A. Seraj
    M. M. Sheikh-Jabbari
    Journal of High Energy Physics, 2018
  • [30] Electric-magnetic electrically small antennas
    Belrose, John S.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 2070 - 2073