Hosoya index of unicyclic graphs with prescribed pendent vertices

被引:0
|
作者
Hongbo Hua
机构
[1] Huaiyin Institute of Technology,Department of Computing Science
来源
关键词
Unicyclic graph; Hosoya index; permanent; pendent vertex; girth; 05C90; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The Hosoya index z(G) of a (molecular) graph G is defined as the total number of subsets of the edge set, in which any two edges are mutually independent, i.e., the total number of independent-edge sets of G. By G(n, l, k) we denote the set of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}^{l}$$\end{document} be the graph obtained by identifying the center of the star Sn-l+1 with any vertex of Cl. By \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}^{l,\,k}$$\end{document} we denote the graph obtained by identifying one pendent vertex of the path Pn-l-k+1 with one pendent vertex of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{l+k}^{l}$$\end{document} . In this paper, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}^{l,\,k}$$\end{document} is the unique unicyclic graph with minimal Hosoya index among all graphs in G(n, l, k).
引用
收藏
页码:831 / 844
页数:13
相关论文
共 50 条
  • [21] Note on unicyclic graphs with given number of pendent vertices and minimal energy
    Huo, Bofeng
    Ji, Shengjin
    Li, Xueliang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1381 - 1387
  • [22] The Maximum Hosoya Index of Unicyclic Graphs with Diameter at Most Four
    Liu, Weijun
    Ban, Jingwen
    Feng, Lihua
    Cheng, Tao
    Emmert-Streib, Frank
    Dehmer, Matthias
    SYMMETRY-BASEL, 2019, 11 (08):
  • [23] The Signless Laplacian Coefficients and the Incidence Energy of Unicyclic Graphs with given Pendent Vertices
    Wang, Wen-Huan
    Zhong, Lei
    FILOMAT, 2019, 33 (01) : 177 - 192
  • [24] On the Laplacian Coefficients and Laplacian-Like Energy of Unicyclic Graphs with n Vertices and m Pendent Vertices
    Pai, Xinying
    Liu, Sanyang
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] On the Randic index of unicyclic graphs with k pendant vertices
    Pan, Xiang-Feng
    Xu, Jun-Ming
    Yang, Chao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 55 (02) : 409 - 417
  • [26] The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index
    Deng, Hanyuan
    Chen, Shubo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 59 (01) : 171 - 190
  • [27] On the maximum ABC index of graphs without pendent vertices
    Shao, Zehui
    Wu, Pu
    Gao, Yingying
    Gutman, Ivan
    Zhang, Xiujun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 298 - 312
  • [28] ON THE MODIFIED RANDIC INDEX OF GRAPHS WITH k PENDENT VERTICES
    Eliasi, Mehdi
    UTILITAS MATHEMATICA, 2019, 111 : 189 - 197
  • [29] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Shang-wang Tan
    Qi-long Wang
    Yan Lin
    Journal of Applied Mathematics and Computing, 2017, 55 : 1 - 24
  • [30] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Tan, Shang-wang
    Wang, Qi-long
    Lin, Yan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 1 - 24