Hosoya index of unicyclic graphs with prescribed pendent vertices

被引:0
|
作者
Hongbo Hua
机构
[1] Huaiyin Institute of Technology,Department of Computing Science
来源
关键词
Unicyclic graph; Hosoya index; permanent; pendent vertex; girth; 05C90; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The Hosoya index z(G) of a (molecular) graph G is defined as the total number of subsets of the edge set, in which any two edges are mutually independent, i.e., the total number of independent-edge sets of G. By G(n, l, k) we denote the set of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}^{l}$$\end{document} be the graph obtained by identifying the center of the star Sn-l+1 with any vertex of Cl. By \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}^{l,\,k}$$\end{document} we denote the graph obtained by identifying one pendent vertex of the path Pn-l-k+1 with one pendent vertex of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{l+k}^{l}$$\end{document} . In this paper, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}^{l,\,k}$$\end{document} is the unique unicyclic graph with minimal Hosoya index among all graphs in G(n, l, k).
引用
收藏
页码:831 / 844
页数:13
相关论文
共 50 条