The Hosoya index z(G) of a (molecular) graph G is defined as the total number of subsets of the edge set, in which any two edges are mutually independent, i.e., the total number of independent-edge sets of G. By G(n, l, k) we denote the set of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_{n}^{l}$$\end{document} be the graph obtained by identifying the center of the star Sn-l+1 with any vertex of Cl. By \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{n}^{l,\,k}$$\end{document} we denote the graph obtained by identifying one pendent vertex of the path Pn-l-k+1 with one pendent vertex of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_{l+k}^{l}$$\end{document} . In this paper, we show that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{n}^{l,\,k}$$\end{document} is the unique unicyclic graph with minimal Hosoya index among all graphs in G(n, l, k).