Temporal decay of a global solution to 3D magnetohydrodynamic system in critical spaces

被引:0
|
作者
Baoquan Yuan
Yamin Xiao
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
关键词
Magnetohydrodynamic equations; Long-time behavior; Critical spaces; 35Q35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the large time properties of global solutions to the 3D incompressible magnetohydrodynamic system in critical spaces H˙12(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{H}}^\frac{1}{2}({\mathbb {R}}^3)$$\end{document} and L3(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^3({\mathbb {R}}^3)$$\end{document}. More precisely, we obtain the temporal decay rate (1+t)-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{1}{4}}$$\end{document} for a small global solution in the space H˙12(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{H}}^\frac{1}{2}({\mathbb {R}}^3)$$\end{document}, and a small global solution in the space L3(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^3({\mathbb {R}}^3)$$\end{document} is non-increasing and decays to zero at infinity.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [1] Temporal decay of a global solution to 3D magnetohydrodynamic system in critical spaces
    Yuan, Baoquan
    Xiao, Yamin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 1 - 15
  • [2] Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system
    Xu, Fuyi
    Zhang, Xinguang
    Wu, Yonghong
    Liu, Lishan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) : 285 - 310
  • [3] Temporal decay estimate of solutions to 3D generalized magnetohydrodynamic system
    Xiao, Yamin
    Yuan, Baoquan
    Zhang, Qiuyue
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 108 - 113
  • [4] Global existence for the magnetohydrodynamic system in critical spaces
    Abidi, Hammadi
    Paicu, Marius
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 447 - 476
  • [5] Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces
    Ma, Haitao
    Zhai, Xiaoping
    Yan, Wei
    Li, Yongsheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [6] Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov–Sobolev-type spaces
    Haitao Ma
    Xiaoping Zhai
    Wei Yan
    Yongsheng Li
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [7] Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations
    Ye, Zhuan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) : 1111 - 1121
  • [8] Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations
    Zhuan Ye
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1111 - 1121
  • [9] Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity
    Xiaofeng Hou
    Mina Jiang
    Hongyun Peng
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity
    Hou, Xiaofeng
    Jiang, Mina
    Peng, Hongyun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):