Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity

被引:0
|
作者
Xiaofeng Hou
Mina Jiang
Hongyun Peng
机构
[1] Shanghai University,Department of Mathematics
[2] Central China Normal University,School of Mathematics and Statistics
[3] Guangdong University of Technology,School of Mathematics and Statistics
关键词
Compressible magnetohydrodynamic equations; Global strong solutions; Vacuum; 76D05; 35K65; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. When ‖ρ0‖L1+‖H0‖L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \rho _0\Vert _{L^1}+\Vert H_0\Vert _{L^2}$$\end{document} is suitably small, we establish the global existence of the strong solution, where ρ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _0$$\end{document} and H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.
引用
收藏
相关论文
共 50 条