Cyclic homology for bornological coarse spaces

被引:0
|
作者
Luigi Caputi
机构
[1] Universität Regensburg,Fakultät für Mathematik
来源
Journal of Homotopy and Related Structures | 2020年 / 15卷
关键词
K-theory and homology; Algebraic Topology; Coarse Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of the paper is to define Hochschild and cyclic homology for bornological coarse spaces, i.e., lax symmetric monoidal functors XHHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HH}\,}}_{}^G$$\end{document} and XHCG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HC}\,}}_{}^G$$\end{document} from the category GBornCoarse\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\mathbf {BornCoarse}$$\end{document} of equivariant bornological coarse spaces to the cocomplete stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-category Ch∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {Ch}_\infty $$\end{document} of chain complexes reminiscent of the classical Hochschild and cyclic homology. We investigate relations to coarse algebraic K-theory XKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}K^G_{}$$\end{document} and to coarse ordinary homology XHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}H}\,}}^G$$\end{document} by constructing a trace-like natural transformation XKG→XHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}K_{}^G\rightarrow {{\,\mathrm{\mathcal {X}H}\,}}^G$$\end{document} that factors through coarse Hochschild (and cyclic) homology. We further compare the forget-control map for XHHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HH}\,}}_{}^G$$\end{document} with the associated generalized assembly map.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条