Cyclic homology for bornological coarse spaces

被引:0
|
作者
Luigi Caputi
机构
[1] Universität Regensburg,Fakultät für Mathematik
关键词
K-theory and homology; Algebraic Topology; Coarse Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of the paper is to define Hochschild and cyclic homology for bornological coarse spaces, i.e., lax symmetric monoidal functors XHHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HH}\,}}_{}^G$$\end{document} and XHCG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HC}\,}}_{}^G$$\end{document} from the category GBornCoarse\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\mathbf {BornCoarse}$$\end{document} of equivariant bornological coarse spaces to the cocomplete stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-category Ch∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {Ch}_\infty $$\end{document} of chain complexes reminiscent of the classical Hochschild and cyclic homology. We investigate relations to coarse algebraic K-theory XKG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}K^G_{}$$\end{document} and to coarse ordinary homology XHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}H}\,}}^G$$\end{document} by constructing a trace-like natural transformation XKG→XHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}K_{}^G\rightarrow {{\,\mathrm{\mathcal {X}H}\,}}^G$$\end{document} that factors through coarse Hochschild (and cyclic) homology. We further compare the forget-control map for XHHG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathcal {X}HH}\,}}_{}^G$$\end{document} with the associated generalized assembly map.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条
  • [1] Cyclic homology for bornological coarse spaces
    Caputi, Luigi
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2020, 15 (3-4) : 463 - 493
  • [2] Bornological Coarse Spaces
    Bunke, Ulrich
    Engel, Alexander
    HOMOTOPY THEORY WITH BORNOLOGICAL COARSE SPACES, 2020, 2269 : 13 - 20
  • [3] Homotopy Theory with Bornological Coarse Spaces Introduction
    Bunke, Ulrich
    Engel, Alexander
    HOMOTOPY THEORY WITH BORNOLOGICAL COARSE SPACES, 2020, 2269 : 1 - +
  • [4] Bornological spaces
    Bentley, H. L.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [5] Bornological spaces
    H. L. Bentley
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [6] CYCLIC HOMOLOGY OF FORMAL SPACES
    VIGUEPOIRRIER, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 91 (1-3) : 347 - 354
  • [7] BORNOLOGICAL TENSORIAL PRODUCTS OF BORNOLOGICAL SPACES
    HOGBENLEND, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (25): : 1556 - +
  • [8] The Pull back for bornological and ultra bornological spaces
    Bonet, J.
    Dierolf, S.
    NOTE DI MATEMATICA, 2006, 25 (01): : 63 - 67
  • [9] Semi-coarse spaces, homotopy and homology
    Rieser, Antonio
    Trevino-Marroquin, Jonathan
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [10] BASES IN BORNOLOGICAL SPACES
    MOSCATEL.VB
    STUDIA MATHEMATICA, 1974, 50 (03) : 251 - 264