Quantum Group;
Module Versus;
Universal Property;
Association Scheme;
Irreducible Module;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Since the introduction of Askey–Wilson algebras by Zhedanov in 1991, the classification of the finite-dimensional irreducible modules of Askey–Wilson algebras remains open. A universal analog ▵q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle_q}$$\end{document} of the Askey–Wilson algebras was recently studied. In this paper, we consider a family of infinite-dimensional ▵q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle_q}$$\end{document}-modules. By the universal property of these ▵q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle_q}$$\end{document}-modules, we classify the finite-dimensional irreducible ▵q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\triangle_q}$$\end{document}-modules when q is not a root of unity.