Asymptotic Compactness and Attractors for Phase-Field Equations in ℝ3

被引:0
|
作者
Francisco Morillas
José Valero
机构
[1] Universidad Politécnica de Valencia,Dpto. de Ingeniería Hidráulica y Medio Ambiente
[2] Universidad Miguel Hernández,Centro de Investigación Operativa
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Setvalued dynamical system; Global attractor; Phase-field equations; Unbounded domain; 35B40; 35B41; 35K55; 35K57; 37B25; 58C06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the asymptotic behaviour of solutions of the phase-field system on an unbounded domain. We do not assume conditions on the non-linear term ensuring the uniqueness of the Cauchy problem, so that we have to work with multivalued semiflows rather than with semigroups of operators. In this way we prove the existence of a global attractor by considering the convergence in an appropriate weighted space. This result is also new for more restrictive conditions, which guarantee the uniqueness of solutions.
引用
收藏
页码:861 / 897
页数:36
相关论文
共 50 条
  • [31] Robust exponential attractors for a family of nonconserved phase-field systems with memory
    Gatti, S
    Grasselli, M
    Pata, V
    Squassina, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) : 1019 - 1029
  • [32] Asymptotic attractors of KdV–KSV equations
    Zhang Q.
    SeMA Journal, 2018, 75 (3) : 535 - 544
  • [33] Asymptotic Analysis to a Phase-Field Model with a Nonsmooth Memory Kernel
    Bonfanti, Giovanna
    Luterotti, Fabio
    JOURNAL OF CONVEX ANALYSIS, 1999, 6 (01) : 41 - 57
  • [34] CONVERGENCE OF EXPONENTIAL ATTRACTORS FOR A TIME SPLITTING APPROXIMATION OF THE CAGINALP PHASE-FIELD SYSTEM
    Batangouna, Narcisse
    Pierre, Morgan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 1 - 19
  • [35] Global attractors for a three-dimensional conserved phase-field system with memory
    Mola, Gianluca
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (02) : 317 - 353
  • [36] ERGODICITY FOR THE PHASE-FIELD EQUATIONS PERTURBED BY GAUSSIAN NOISE
    Barbu, Viorel
    Da Prato, Giuseppe
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (01) : 35 - 55
  • [37] STABILITY OF EXPONENTIAL ATTRACTORS FOR SINGULARLY PERTURBED PHASE-FIELD SYSTEMS OF OONO TYPE
    Bonfoh, Ahmed
    Alzahrani, Rabab
    Miranville, Alain
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (03): : 825 - 876
  • [38] Benchmark Problems for the Numerical Schemes of the Phase-Field Equations
    Hwang, Youngjin
    Lee, Chaeyoung
    Kwak, Soobin
    Choi, Yongho
    Ham, Seokjun
    Kang, Seungyoon
    Yang, Junxiang
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [39] Fourier-Spectral Method for the Phase-Field Equations
    Yoon, Sungha
    Jeong, Darae
    Lee, Chaeyoung
    Kim, Hyundong
    Kim, Sangkwon
    Lee, Hyun Geun
    Kim, Junseok
    MATHEMATICS, 2020, 8 (08) : 1 - 36
  • [40] Stability of Solutions to a Caginalp Phase-Field Type Equations
    Ipopa, Mohamed Ali
    Bangola, Brice Landry Doumbe
    Ovono, Armel Andami
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 949 - 958