A hybrid classical-quantum approach to speed-up Q-learning

被引:0
|
作者
A. Sannia
A. Giordano
N. Lo Gullo
C. Mastroianni
F. Plastina
机构
[1] Università della Calabria,Dipartimento di Fisica
[2] Campus Universitat Illes Balears,Institute for Cross
[3] ICAR-CNR,Disciplinary Physics and Complex Systems (IFISC) UIB
[4] INFN,CSIC
[5] gruppo collegato di Cosenza,undefined
[6] Quantum Algorithms and Software,undefined
[7] VTT Technical Research Centre of Finland Ltd,undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a classical-quantum hybrid approach to computation, allowing for a quadratic performance improvement in the decision process of a learning agent. Using the paradigm of quantum accelerators, we introduce a routine that runs on a quantum computer, which allows for the encoding of probability distributions. This quantum routine is then employed, in a reinforcement learning set-up, to encode the distributions that drive action choices. Our routine is well-suited in the case of a large, although finite, number of actions and can be employed in any scenario where a probability distribution with a large support is needed. We describe the routine and assess its performance in terms of computational complexity, needed quantum resource, and accuracy. Finally, we design an algorithm showing how to exploit it in the context of Q-learning.
引用
收藏
相关论文
共 50 条
  • [21] Stacking classical-quantum hybrid learning approach for corrosion inhibition efficiency of N-heterocyclic compounds
    Akrom, Muhamad
    Rustad, Supriadi
    Sutojo, Totok
    Prabowo, Wahyu Aji Eko
    Dipojono, Hermawan Kresno
    Maezono, Ryo
    Kasai, Hideaki
    RESULTS IN SURFACES AND INTERFACES, 2025, 18
  • [22] Deep Reinforcement Learning with Sarsa and Q-Learning: A Hybrid Approach
    Xu, Zhi-xiong
    Cao, Lei
    Chen, Xi-liang
    Li, Chen-xi
    Zhang, Yong-liang
    Lai, Jun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09) : 2315 - 2322
  • [23] Objective trajectories in hybrid classical-quantum dynamics
    Oppenheim, Jonathan
    Sparaciari, Carlo
    Soda, Barbara
    Weller-Davies, Zachary
    QUANTUM, 2023, 7
  • [24] Hybrid classical-quantum autoencoder for anomaly detection
    Sakhnenko, Alona
    O'Meara, Corey
    Ghosh, Kumar J. B.
    Mendl, Christian B.
    Cortiana, Giorgio
    Bernabe-Moreno, Juan
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [25] Hybrid classical-quantum autoencoder for anomaly detection
    Alona Sakhnenko
    Corey O’Meara
    Kumar J. B. Ghosh
    Christian B. Mendl
    Giorgio Cortiana
    Juan Bernabé-Moreno
    Quantum Machine Intelligence, 2022, 4
  • [26] Memory-Sample Lower Bounds for Learning with Classical-Quantum Hybrid Memory
    Liu, Qipeng
    Raz, Ran
    Zhan, Wei
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1097 - 1110
  • [27] FLOWS IN NANOSTRUCTURES: HYBRID CLASSICAL-QUANTUM MODELS
    Chivilikhin, S. A.
    Gusarov, V. V.
    Popov, I. Yu.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (01): : 7 - 26
  • [28] Hybrid classical-quantum systems in terms of moments
    Brizuela, David
    Uria, Sara F.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [29] Speed-up and entanglement in quantum searching
    Braunstein, SL
    Pati, AK
    QUANTUM INFORMATION & COMPUTATION, 2002, 2 (05) : 399 - 409
  • [30] Quantum speed-up? Not so fast
    Aron, Jacob
    NEW SCIENTIST, 2015, 228 (3052) : 12 - 12