On the hyperbolicity of 3D plasticity equations in isostatic coordinates

被引:0
|
作者
Yu. N. Radaev
机构
[1] Samara State University,
来源
Mechanics of Solids | 2008年 / 43卷
关键词
Partial Derivative; Principal Stress; Space Form; Principal Direction; Maximal Tangential Stress;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of classifying partial differential equations of the three-dimensional problem of ideal plasticity (for stress states corresponding to an edge of the Tresca prism) and the problem of finding a change of independent variables reducing these equations to the simplest normal Cauchy form. The original system of equations is represented in an isostatic coordinate system and is substantially nonlinear. We state a criterion for the simplest normal Cauchy form and find a coordinate system reducing the original system to the simplest normal Cauchy form. We show that the condition obtained in the present paper for a system to take the simplest normal form is stronger than the Petrovskii t-hyperbolicity condition if t is understood as the canonical isostatic coordinate whose level surfaces in space form fibers normal to the principal direction field corresponding to the maximum (minimum) principal stress.
引用
收藏
页码:756 / 764
页数:8
相关论文
共 50 条
  • [41] High precision 3D coordinates location technology for pellet
    Fan Y.
    Zhang J.
    Zhou J.
    Tang J.
    Xiao D.
    Wang C.
    Dong J.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (10): : 2358 - 2362
  • [42] ON 3D HAMILTONIAN SYSTEMS VIA DARBOUX WEINSTEIN COORDINATES
    Tudoran, Razvan M.
    Tudoran, Ramona A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (03) : 451 - 459
  • [43] Computation of 3D Coordinates from Stereo Images with RPCs
    Kim, Kwang-Eun
    KOREAN JOURNAL OF REMOTE SENSING, 2005, 21 (02) : 135 - 143
  • [44] Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System
    Mussabayev, R. R.
    Kalimoldayev, M. N.
    Amirgaliyev, Ye N.
    Tairova, A. T.
    Mussabayev, T. R.
    OPEN ENGINEERING, 2018, 8 (01): : 109 - 117
  • [45] CRLB for Estimation of 3D Sensor Biases in Spherical Coordinates
    Kowalski, Michael
    Belfadel, Djedjiga
    Bar-Shalom, Yaakov
    Willett, Peter
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [46] 3D Parallel Coordinates for Multidimensional Data Cube Exploration
    Alwajidi, Safaa
    Yang, Li
    2018 INTERNATIONAL CONFERENCE ON COMPUTING AND BIG DATA (ICCBD 2018), 2018, : 23 - 27
  • [47] NEIGHBORHOOD SELECTION FOR DIFFERENTIAL COORDINATES OF 3D POINT CLOUDS
    Chen, Jyun-Yuan
    Lin, Chao-Hung
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (06): : 2393 - 2405
  • [48] 3D hybrid simulation code using curvilinear coordinates
    Bagdonat, T
    Motschmann, U
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) : 470 - 485
  • [49] 3DPlasticToolkit: Plasticity for 3D User Interfaces
    Lacoche, Jeremy
    Duval, Thierry
    Arnaldi, Bruno
    Maisel, Eric
    Royan, Jerome
    VIRTUAL REALITY AND AUGMENTED REALITY, EUROVR 2019, 2019, 11883 : 62 - 83
  • [50] HYPERBOLICITY OF THE 3+1 SYSTEM OF EINSTEIN EQUATIONS
    CHOQUETBRUHAT, Y
    RUGGERI, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (12): : 425 - 429