Reversible multicolor chromism in layered formamidinium metal halide perovskites

被引:0
|
作者
Bryan A. Rosales
Laura E. Mundt
Taylor G. Allen
David T. Moore
Kevin J. Prince
Colin A. Wolden
Garry Rumbles
Laura T. Schelhas
Lance M. Wheeler
机构
[1] Center for Chemistry and Nanoscience,Department of Chemical and Biological Engineering
[2] National Renewable Energy Laboratory,undefined
[3] SLAC National Accelerator Laboratory,undefined
[4] Colorado School of Mines,undefined
[5] Material Science Program,undefined
[6] Colorado School of Mines,undefined
[7] Renewable and Sustainable Energy Institute,undefined
[8] Department of Chemistry,undefined
[9] University of Colorado Boulder,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this work, we leverage the low formation energy of metal halide perovskites to demonstrate multicolor reversible chromism. We synthesized layered Ruddlesden-Popper FAn+1PbnX3n+1 (FA = formamidinium, X = I, Br; n = number of layers = 1, 2, 3 … ∞) and reversibly tune the dimensionality (n) by modulating the strength and number of H-bonds in the system. H-bonding was controlled by exposure to solvent vapor (solvatochromism) or temperature change (thermochromism), which shuttles FAX salt pairs between the FAn+1PbnX3n+1 domains and adjacent FAX “reservoir” domains. Unlike traditional chromic materials that only offer a single-color transition, FAn+1PbnX3n+1 films reversibly switch between multiple colors including yellow, orange, red, brown, and white/colorless. Each colored phase exhibits distinct optoelectronic properties characteristic of 2D superlattice materials with tunable quantum well thickness.
引用
收藏
相关论文
共 50 条
  • [21] Importance of Electronic Correlations and Unusual Excitonic Effects in Formamidinium Lead Halide Perovskites
    Whitcher, T. J.
    Zhu, J. -X.
    Chi, X.
    Hu, H.
    Zhao, Daming
    Asmara, T. C.
    Yu, X.
    Breese, M. B. H.
    Neto, A. H. Castro
    Lam, Y. M.
    Wee, A. T. S.
    Chia, Elbert E. M.
    Rusydi, A.
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [22] Formamidinium-Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies
    Li, Yang
    Liu, Fang Zhou
    Waqas, Muhammud
    Leung, Tik Lun
    Tam, Ho Won
    Lan, Xiao Qi
    Tu, Bao
    Chen, Wei
    Prime, Aleksandra B. Djurisic
    He, Zhu Bing
    SMALL METHODS, 2018, 2 (07):
  • [23] Advances and promises of layered halide hybrid perovskites
    Tretiak, Sergei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [24] Intricacies of halide ion mobility in metal halide perovskites
    Kamat, Prashant
    Scheidt, Rebecca
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [25] Dimensionality engineering of metal halide perovskites
    Kahwagi, Rashad F.
    Thornton, Sean T.
    Ben Smith
    Koleilat, Ghada, I
    FRONTIERS OF OPTOELECTRONICS, 2020, 13 (03) : 196 - 224
  • [26] Fluid Chemistry of Metal Halide Perovskites
    Chen, Changshun
    Yao, Qing
    Wang, Jinpei
    Ran, Chenxin
    Chao, Lingfeng
    Xia, Yingdong
    Chen, Yonghua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [27] Ion Migration in Metal Halide Perovskites
    Nur'aini, Anafi
    Lee, Seokwon
    Oh, Ilwhan
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 71 - 77
  • [28] Nonradiative Losses in Metal Halide Perovskites
    Stranks, Samuel D.
    ACS ENERGY LETTERS, 2017, 2 (07): : 1515 - 1525
  • [29] Metal halide perovskites for energy applications
    Zhang W.
    Eperon G.E.
    Snaith H.J.
    Nature Energy, 1 (6)
  • [30] Photophysical Processes in Metal Halide Perovskites
    Leite, Marina S.
    Miguez, Hernan
    ADVANCED OPTICAL MATERIALS, 2021, 9 (18):