We study twisted conjugacy classes of the unit element in different groups. Fel’shtyn and Troitsky showed that the twisted conjugacy class of the unit element of an abelian group is a subgroup for every automorphism. The structure is investigated of a group whose twisted conjugacy class of the unit element is a subgroup for every automorphism (inner automorphism).
机构:
Univ Lincoln, Charlotte Scott Res Ctr Algebra, Lincoln, England
Sobolev Inst Math, Novosibirsk 630090, RussiaUniv Lincoln, Charlotte Scott Res Ctr Algebra, Lincoln, England
机构:
Univ Maryland, Dept Math, College Pk, MD 20742 USAUniv Maryland, Dept Math, College Pk, MD 20742 USA
Adams, Jeffrey
He, Xuhua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Math, College Pk, MD 20742 USA
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaUniv Maryland, Dept Math, College Pk, MD 20742 USA
He, Xuhua
Nie, Sian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaUniv Maryland, Dept Math, College Pk, MD 20742 USA
机构:
Indian Stat Inst ISI, Stat Math Unit, 8th Mile Mysore Rd, Bangalore 560059, IndiaIndian Stat Inst ISI, Stat Math Unit, 8th Mile Mysore Rd, Bangalore 560059, India