Integral Homology of Random Simplicial Complexes

被引:0
|
作者
Tomasz Łuczak
Yuval Peled
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[2] Givat Ram The Hebrew University,School of Computer Science and Engineering Edmond Safra Campus
来源
关键词
Random simplicial complexes; Hitting time; Homology Shadow; 05E45; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
The random 2-dimensional simplicial complex process starts with a complete graph on n vertices, and in every step a new 2-dimensional face, chosen uniformly at random, is added. We prove that with probability tending to 1 as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, the first homology group over Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document} vanishes at the very moment when all the edges are covered by triangular faces.
引用
收藏
页码:131 / 142
页数:11
相关论文
共 50 条
  • [21] SEMI-SIMPLICIAL COMPLEXES AND SINGULAR HOMOLOGY
    EILENBERG, S
    ZILBER, JA
    ANNALS OF MATHEMATICS, 1950, 51 (03) : 499 - 513
  • [22] Small Simplicial Complexes with Prescribed Torsion in Homology
    Andrew Newman
    Discrete & Computational Geometry, 2019, 62 : 433 - 460
  • [23] Small Simplicial Complexes with Prescribed Torsion in Homology
    Newman, Andrew
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (02) : 433 - 460
  • [24] Maps on random hypergraphs and random simplicial complexes
    Ren, Shiquan
    Wu, Chengyuan
    Wu, Jie
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (03)
  • [25] Shifted simplicial complexes are Laplacian integral
    Duval, AM
    Reiner, V
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) : 4313 - 4344
  • [26] DYNAMICAL MODELS FOR RANDOM SIMPLICIAL COMPLEXES
    Fountoulakis, Nikolaos
    Iyer, Tejas
    Mailler, Cecile
    Sulzbach, Henning
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2860 - 2913
  • [27] Simplicial Kirchhoff index of random complexes
    Kook, Woong
    Lee, Kang-Ju
    ADVANCES IN APPLIED MATHEMATICS, 2024, 159
  • [28] Topology of random simplicial complexes: a survey
    Kahle, Matthew
    ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 201 - 221
  • [29] Random walks on simplicial complexes and harmonics
    Mukherjee, Sayan
    Steenbergen, John
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (02) : 379 - 405
  • [30] ON TOPOLOGICAL MINORS IN RANDOM SIMPLICIAL COMPLEXES
    Gundert, Anna
    Wagner, Uli
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) : 1815 - 1828