Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics

被引:2
|
作者
Bing Mao
Jingdong Ma
Shaobo Duan
Yuwei Xia
Yaru Tao
Lianzhong Zhang
机构
[1] Henan Provincial People’s Hospital,School of Medicine and Health Management
[2] Zhengzhou University People’s Hospital,undefined
[3] Henan University People’s Hospital,undefined
[4] Huazhong University of Science and Technology,undefined
[5] Huiying Medical Technology (Beijing) Co.,undefined
[6] Ltd,undefined
[7] Zhengzhou University,undefined
来源
European Radiology | 2021年 / 31卷
关键词
Ultrasonography; Machine learning; Liver neoplasms; Radiomics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4576 / 4586
页数:10
相关论文
共 50 条
  • [31] Machine learning-based classification of mitochondrial morphology in primary neurons and brain
    Garrett M. Fogo
    Anthony R. Anzell
    Kathleen J. Maheras
    Sarita Raghunayakula
    Joseph M. Wider
    Katlynn J. Emaus
    Timothy D. Bryson
    Melissa J. Bukowski
    Robert W. Neumar
    Karin Przyklenk
    Thomas H. Sanderson
    Scientific Reports, 11
  • [32] Machine learning-based classification of mitochondrial morphology in primary neurons and brain
    Fogo, Garrett M.
    Anzell, Anthony R.
    Maheras, Kathleen J.
    Raghunayakula, Sarita
    Wider, Joseph M.
    Emaus, Katlynn J.
    Bryson, Timothy D.
    Bukowski, Melissa J.
    Neumar, Robert W.
    Przyklenk, Karin
    Sanderson, Thomas H.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Machine Learning-Based Classification of Academic Performance via Imaging Sensors
    Lin, Yongzheng
    Liu, Hong
    Chen, Zhenxiang
    Ma, Kun
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 24952 - 24958
  • [34] Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer
    Matthijs C. F. Cysouw
    Bernard H. E. Jansen
    Tim van de Brug
    Daniela E. Oprea-Lager
    Elisabeth Pfaehler
    Bart M. de Vries
    Reindert J. A. van Moorselaar
    Otto S. Hoekstra
    André N. Vis
    Ronald Boellaard
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 340 - 349
  • [35] Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer
    Cysouw, Matthijs C. F.
    Jansen, Bernard H. E.
    van de Brug, Tim
    Oprea-Lager, Daniela E.
    Pfaehler, Elisabeth
    de Vries, Bart M.
    van Moorselaar, Reindert J. A.
    Hoekstra, Otto S.
    Vis, Andre N.
    Boellaard, Ronald
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (02) : 340 - 349
  • [36] A machine learning-based radiomics model for prediction of tumor mutation burden in gastric cancer
    Ma, Tingting
    Zhang, Yuwei
    Zhao, Mengran
    Wang, Lingwei
    Wang, Hua
    Ye, Zhaoxiang
    FRONTIERS IN GENETICS, 2023, 14
  • [37] MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status
    Kayadibi, Yasemin
    Kocak, Burak
    Ucar, Nese
    Akan, Yesim Namdar
    Yildirim, Emine
    Bektas, Sibel
    ACADEMIC RADIOLOGY, 2022, 29 : S126 - S134
  • [38] Machine learning-based radiomics models for prediction of locoregional recurrence in patients with breast cancer
    Lee, Joongyo
    Yoo, Sang Kyun
    Kim, Kangpyo
    Lee, Byung Min
    Park, Vivian Youngjean
    Kim, Jin Sung
    Kim, Yong Bae
    ONCOLOGY LETTERS, 2023, 26 (04)
  • [39] Machine Learning-Based Radiomics Nomogram for Detecting Extramural Venous Invasion in Rectal Cancer
    Liu, Siye
    Yu, Xiaoping
    Yang, Songhua
    Hu, Pingsheng
    Hu, Yingbin
    Chen, Xiaoyan
    Li, Yilin
    Zhang, Zhe
    Li, Cheng
    Lu, Qiang
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [40] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Taghavi, Marjaneh
    Trebeschi, Stefano
    Simoes, Rita
    Meek, David B.
    Beckers, Rianne C. J.
    Lambregts, Doenja M. J.
    Verhoef, Cornelis
    Houwers, Janneke B.
    van der Heide, Uulke A.
    Beets-Tan, Regina G. H.
    Maas, Monique
    ABDOMINAL RADIOLOGY, 2021, 46 (01) : 249 - 256