The Positive Solutions of the Matukuma Equation and the Problem of Finite Radius and Finite Mass

被引:0
|
作者
Jürgen Batt
Yi Li
机构
[1] Mathematisches Institut,Department of Mathematics
[2] der Universität München,Department of Mathematics
[3] University of Iowa,undefined
[4] Xian Jiaotong University,undefined
关键词
Stationary Point; Autonomous System; Stable Manifold; Volterra System; Poisson System;
D O I
暂无
中图分类号
学科分类号
摘要
This work is an extensive study of the 3 different types of positive solutions of the Matukuma equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{r^{2}}\left( r^{2}\phi^{\prime}\right) ^{\prime}=-{\frac{r^{\lambda-2}}{\left( 1+r^{2}\right)^{\lambda /2}}}\phi^{p},p >1 ,\lambda >0 }$$\end{document}: the E-solutions (regular at r = 0), the M-solutions (singular at r = 0) and the F-solutions (whose existence begins away from r = 0). An essential tool is a transformation of the equation into a 2-dimensional asymptotically autonomous system, whose limit sets (by a theorem of H. R. Thieme) are the limit sets of Emden–Fowler systems, and serve as to characterizate the different solutions. The emphasis lies on the study of the M-solutions. The asymptotic expansions obtained make it possible to apply the results to the important question of stellar dynamics, solutions to which lead to galactic models (stationary solutions of the Vlasov–Poisson system) of finite radius and/or finite mass for different p, λ.
引用
收藏
页码:613 / 675
页数:62
相关论文
共 50 条
  • [41] DIFFERENTIATION OF FINITE-ELEMENT SOLUTIONS OF THE POISSON EQUATION
    SILVESTER, PP
    OMERAGIC, D
    IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) : 1993 - 1996
  • [42] On finite energy solutions of the KP-I equation
    Koch, H.
    Tzvetkov, N.
    MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) : 55 - 68
  • [43] Master Equation for the Finite State Space Planning Problem
    Charles Bertucci
    Jean-Michel Lasry
    Pierre-Louis Lions
    Archive for Rational Mechanics and Analysis, 2021, 242 : 327 - 342
  • [44] FINITE ELEMENT INTEGRAL EQUATION SOLUTION TO TORSION PROBLEM
    WONG, JP
    AGUIRRERAMIREZ, G
    COMPUTERS & STRUCTURES, 1978, 9 (01) : 53 - 55
  • [45] Finite-dimensional solutions of a modified Zakai equation
    Benes, VE
    Elliott, RJ
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (04) : 341 - 351
  • [46] Simulating thermohydrodynamics by finite difference solutions of the Boltzmann equation
    Surmas, R.
    Ortiz, C. E. Pico
    Philippi, P. C.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 81 - 90
  • [47] FINITE-GAP SOLUTIONS OF THE HARRY DYM EQUATION
    DMITRIEVA, LA
    PHYSICS LETTERS A, 1993, 182 (01) : 65 - 70
  • [48] On finite energy solutions of the KP-I equation
    H. Koch
    N. Tzvetkov
    Mathematische Zeitschrift, 2008, 258 : 55 - 68
  • [49] FINITE-GAP ELLIPTIC SOLUTIONS OF THE KDV EQUATION
    SMIRNOV, AO
    ACTA APPLICANDAE MATHEMATICAE, 1994, 36 (1-2) : 125 - 166
  • [50] Analytical Solutions of the Linear Wave Equation with Finite Energy
    Georgieva, D. A.
    Kovachev, L. M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2012, 1487 : 264 - 271