Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas

被引:0
|
作者
Zhen Liu
Xuanke Hong
Linglong Wang
Zeyu Ma
Fangzhan Guan
Weiwei Wang
Yuning Qiu
Xueping Zhang
Wenchao Duan
Minkai Wang
Chen Sun
Yuanshen Zhao
Jingxian Duan
Qiuchang Sun
Lin Liu
Lei Ding
Yuchen Ji
Dongming Yan
Xianzhi Liu
Jingliang Cheng
Zhenyu Zhang
Zhi-Cheng Li
Jing Yan
机构
[1] The First Affiliated Hospital of Zhengzhou University,Department of Neurosurgery
[2] Yanjing Medical College of Capital Medical University,Department of Pathology
[3] The First Affiliated Hospital of Zhengzhou University,Department of MRI
[4] The First Affiliated Hospital of Zhengzhou University,Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology
[5] Chinese Academy of Sciences,undefined
[6] University of Chinese Academy of Sciences,undefined
[7] China-Japan Union Hospital of Jilin University,undefined
[8] Shenzhen United Imaging Research Institute of Innovative Medical Equipment,undefined
来源
BMC Cancer | / 23卷
关键词
Pediatric low-grade glioma; Magnetic resonance imaging; Radiomics; Machine learning; fusion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning
    Lam, Luu Ho Thanh
    Do, Duyen Thi
    Diep, Doan Thi Ngoc
    Nguyet, Dang Le Nhu
    Truong, Quang Dinh
    Tri, Tran Thanh
    Thanh, Huynh Ngoc
    Le, Nguyen Quoc Khanh
    NMR IN BIOMEDICINE, 2022, 35 (11)
  • [32] Applications of machine learning to MR imaging of pediatric low-grade gliomas
    Kudus, Kareem
    Wagner, Matthias
    Ertl-Wagner, Birgit Betina
    Khalvati, Farzad
    CHILDS NERVOUS SYSTEM, 2024, 40 (10) : 3027 - 3035
  • [33] MOLECULAR GENETIC AND EPIGENETIC ANALYSIS OF PEDIATRIC LOW-GRADE ASTROCYTIC GLIOMAS
    Forshew, Tim
    Tatevossian, Ruth
    Clifford, Steven
    Ellison, David
    Sheer, Denise
    NEURO-ONCOLOGY, 2008, 10 (05) : 800 - 800
  • [34] Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation
    Abrigo, Jill M.
    Fountain, Daniel M.
    Provenzale, James M.
    Law, Eric K.
    Kwong, Joey S. W.
    Hart, Michael G.
    Tam, Wilson Wai San
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (01):
  • [35] Magnetic resonance imaging of ethyl-nitrosourea-induced rat gliomas: A model for experimental therapeutics of low-grade gliomas
    Kish, PE
    Blaivas, M
    Strawderman, M
    Muraszko, KM
    Ross, DA
    Ross, BD
    McMahon, G
    JOURNAL OF NEURO-ONCOLOGY, 2001, 53 (03) : 243 - 257
  • [36] Magnetic Resonance Imaging of Ethyl-nitrosourea-induced Rat Gliomas: A Model for Experimental Therapeutics of Low-grade Gliomas
    Phillip E. Kish
    Mila Blaivas
    Myla Strawderman
    Karin M. Muraszko
    Donald A. Ross
    Brian D. Ross
    Gerald McMahon
    Journal of Neuro-Oncology, 2001, 53 : 243 - 257
  • [37] Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases
    Mouthuy, Nathalie
    Cosnard, Guy
    Abarca-Quinones, Jorge
    Michoux, Nicolas
    JOURNAL OF NEURORADIOLOGY, 2012, 39 (05) : 301 - 307
  • [38] Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas
    Kudus, Kareem
    Wagner, Matthias W.
    Namdar, Khashayar
    Bennett, Julie
    Nobre, Liana
    Tabori, Uri
    Hawkins, Cynthia
    Ertl-Wagner, Birgit Betina
    Khalvati, Farzad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] A NEW METHOD FOR CHARACTERIZATION OF LOW-GRADE GLIOMAS USING ULTRA LOW FIELD MAGNETIC-RESONANCE IMAGING
    WAHLUND, LO
    BOETHIUS, J
    KINDSTRAND, E
    MARIONS, O
    SAAF, J
    WETTERBERG, L
    MAGNETIC RESONANCE IMAGING, 1989, 7 (06) : 599 - 603
  • [40] Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences
    Qin, Jiang-bo
    Liu, Zhenyu
    Zhang, Hui
    Shen, Chen
    Wang, Xiao-chun
    Tan, Yan
    Wang, Shuo
    Wu, Xiao-feng
    Tian, Jie
    MEDICAL SCIENCE MONITOR, 2017, 23 : 2168 - 2178