Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations

被引:0
|
作者
Prashanta Garain
Erik Lindgren
机构
[1] Uppsala University,Department of Mathematics
[2] KTH – Royal Institute of Technology,Department of Mathematics
[3] Indian Institute of Technology Indore,Department of Mathematics
关键词
35B65; 35D30; 35J70; 35R09; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
We consider equations involving a combination of local and nonlocal degenerate p-Laplace operators. The main contribution of the paper is almost Lipschitz regularity for the homogeneous equation and Hölder continuity with an explicit Hölder exponent in the general case. For certain parameters, our results also imply Hölder continuity of the gradient. In addition, we establish existence, uniqueness and local boundedness. The approach is based on an iteration in the spirit of Moser combined with an approximation method.
引用
收藏
相关论文
共 50 条
  • [21] Regularity for quasilinear degenerate elliptic equations
    G. Di Fazio
    P. Zamboni
    Mathematische Zeitschrift, 2006, 253 : 787 - 803
  • [22] Regularity for quasilinear degenerate elliptic equations
    Di Fazio, G.
    Zamboni, P.
    MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 787 - 803
  • [23] Weak regularity of degenerate elliptic equations
    Gol’dshtein V.
    Ukhlov A.
    Lobachevskii Journal of Mathematics, 2017, 38 (2) : 262 - 270
  • [24] Hölder continuity of solutions to degenerate nondivergence elliptic equations of the second order
    Yu. A. Alkhutov
    Doklady Mathematics, 2007, 75 : 231 - 235
  • [25] Multiple solutions for mixed local and nonlocal elliptic equations
    Su, Xifeng
    Valdinoci, Enrico
    Wei, Yuanhong
    Zhang, Jiwen
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (03)
  • [26] A Hölder Regularity Theory for a Class of Non-Local Elliptic Equations Related to Subordinate Brownian Motions
    Ildoo Kim
    Kyeong-Hun Kim
    Potential Analysis, 2015, 43 : 653 - 673
  • [27] LOCAL REGULARITY FOR STRONGLY DEGENERATE ELLIPTIC EQUATIONS AND WEIGHTED SUM OPERATORS
    Di Fazio, G.
    Fanciullo, M. S.
    Zamboni, P.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (7-8) : 479 - 492
  • [28] Local Hölder continuity for fractional nonlocal equations with general growth
    Sun-Sig Byun
    Hyojin Kim
    Jihoon Ok
    Mathematische Annalen, 2023, 387 : 807 - 846
  • [29] Boundary Hölder Estimates for a Class of Degenerate Elliptic Equations in Piecewise Smooth Domains
    Jiaxing Hong
    Genggeng Huang
    Chinese Annals of Mathematics, Series B, 2022, 43 : 719 - 738
  • [30] Hölder Continuity of Solutions of Nondivergent Degenerate Second-Order Elliptic Equations
    Alkhutov Y.A.
    Journal of Mathematical Sciences, 2014, 197 (2) : 151 - 174