共 50 条
An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication
被引:0
|作者:
Olivier Morin
Martin Vallières
Steve Braunstein
Jorge Barrios Ginart
Taman Upadhaya
Henry C. Woodruff
Alex Zwanenburg
Avishek Chatterjee
Javier E. Villanueva-Meyer
Gilmer Valdes
William Chen
Julian C. Hong
Sue S. Yom
Timothy D. Solberg
Steffen Löck
Jan Seuntjens
Catherine Park
Philippe Lambin
机构:
[1] University of California San Francisco,Department of Radiation Oncology
[2] McGill University,Medical Physics Unit
[3] Université de Sherbrooke,Department of Computer Science
[4] Maastricht University,The D
[5] Maastricht University Medical Centre+,Lab, Department of Precision Medicine, GROW
[6] OncoRay – National Center for Radiation Research in Oncology, School for Oncology and Developmental Biology
[7] Faculty of Medicine and University Hospital Carl Gustav Carus,Department of Radiology and Nuclear Medicine, GROW
[8] Technische Universität Dresden, School for Oncology and Developmental Biology
[9] Helmholtz-Zentrum Dresden - Rossendorf,Faculty of Medicine and University Hospital Carl Gustav Carus
[10] National Center for Tumor Diseases (NCT),Department of Radiology and Biomedical Imaging
[11] Partner Site Dresden,Department of Epidemiology and Biostatistics
[12] German Cancer Research Center (DKFZ),Bakar Computational Health Sciences Institute
[13] Technische Universität Dresden,undefined
[14] Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR),undefined
[15] University of California San Francisco,undefined
[16] University of California San Francisco,undefined
[17] University of California San Francisco,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual’s disease course unfolds.
引用
收藏
页码:709 / 722
页数:13
相关论文