An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication

被引:0
|
作者
Olivier Morin
Martin Vallières
Steve Braunstein
Jorge Barrios Ginart
Taman Upadhaya
Henry C. Woodruff
Alex Zwanenburg
Avishek Chatterjee
Javier E. Villanueva-Meyer
Gilmer Valdes
William Chen
Julian C. Hong
Sue S. Yom
Timothy D. Solberg
Steffen Löck
Jan Seuntjens
Catherine Park
Philippe Lambin
机构
[1] University of California San Francisco,Department of Radiation Oncology
[2] McGill University,Medical Physics Unit
[3] Université de Sherbrooke,Department of Computer Science
[4] Maastricht University,The D
[5] Maastricht University Medical Centre+,Lab, Department of Precision Medicine, GROW
[6] OncoRay – National Center for Radiation Research in Oncology, School for Oncology and Developmental Biology
[7] Faculty of Medicine and University Hospital Carl Gustav Carus,Department of Radiology and Nuclear Medicine, GROW
[8] Technische Universität Dresden, School for Oncology and Developmental Biology
[9] Helmholtz-Zentrum Dresden - Rossendorf,Faculty of Medicine and University Hospital Carl Gustav Carus
[10] National Center for Tumor Diseases (NCT),Department of Radiology and Biomedical Imaging
[11] Partner Site Dresden,Department of Epidemiology and Biostatistics
[12] German Cancer Research Center (DKFZ),Bakar Computational Health Sciences Institute
[13] Technische Universität Dresden,undefined
[14] Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR),undefined
[15] University of California San Francisco,undefined
[16] University of California San Francisco,undefined
[17] University of California San Francisco,undefined
来源
Nature Cancer | 2021年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual’s disease course unfolds.
引用
收藏
页码:709 / 722
页数:13
相关论文
共 50 条
  • [1] An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication
    Morin, Olivier
    Vallieres, Martin
    Braunstein, Steve
    Ginart, Jorge Barrios
    Upadhaya, Taman
    Woodruff, Henry C.
    Zwanenburg, Alex
    Chatterjee, Avishek
    Villanueva-Meyer, Javier E.
    Valdes, Gilmer
    Chen, William
    Hong, Julian C.
    Yom, Sue S.
    Solberg, Timothy D.
    Lock, Steffen
    Seuntjens, Jan
    Park, Catherine
    Lambin, Philippe
    NATURE CANCER, 2021, 2 (07) : 709 - +
  • [2] Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence
    Keyl, Julius
    Keyl, Philipp
    Montavon, Gregoire
    Hosch, Rene
    Brehmer, Alexander
    Mochmann, Liliana
    Jurmeister, Philipp
    Dernbach, Gabriel
    Kim, Moon
    Koitka, Sven
    Bauer, Sebastian
    Bechrakis, Nikolaos
    Forsting, Michael
    Fuehrer-Sakel, Dagmar
    Glas, Martin
    Gruenwald, Viktor
    Hadaschik, Boris
    Haubold, Johannes
    Herrmann, Ken
    Kasper, Stefan
    Kimmig, Rainer
    Lang, Stephan
    Rassaf, Tienush
    Roesch, Alexander
    Schadendorf, Dirk
    Siveke, Jens T.
    Stuschke, Martin
    Sure, Ulrich
    Totzeck, Matthias
    Welt, Anja
    Wiesweg, Marcel
    Baba, Hideo A.
    Nensa, Felix
    Egger, Jan
    Mueller, Klaus-Robert
    Schuler, Martin
    Klauschen, Frederick
    Kleesiek, Jens
    NATURE CANCER, 2025, 6 (02) : 307 - 322
  • [3] From real-world electronic health record data to real-world results using artificial intelligence
    Knevel, Rachel
    Liao, Katherine P.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 (03) : 306 - 311
  • [4] A Machine Learning Framework Integrating Electronic Health Records for Survival Prognostication in Cervix Cancer
    Malik, N.
    Lichter, K.
    Yoshida, E. J.
    Cunha, J. A. M.
    Hsu, I. C. J.
    Valdes, G.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E529 - E529
  • [5] Real-time data quality assurance analysis for real-world, pan-cancer data.
    Brown, Samantha
    Lee, Jasme
    Pillai, Anjali
    Gandhi, Fenil
    Bahadur, Nadia
    Barton, Laura
    Chan, Kimberly
    Niederhausern, Andrew
    Nichols, Chelsea
    Philip, John
    Regazzi, Ashley Marie
    Shah, Neil J.
    Panageas, Katherine
    Lavery, Jessica A.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [6] Assessing function of electronic health records for real-world data generation
    Guinn, Daphne
    Wilhelm, Erin E.
    Lieberman, Grazyna
    Khozin, Sean
    BMJ EVIDENCE-BASED MEDICINE, 2019, 24 (03) : 95 - 98
  • [7] A Post-Marketing Drug Evaluation Framework Based on Real-World Electronic Health Records Data
    Wang, Yu
    Ma, Shuang
    Ru, Hua
    Ni, Hongyi
    Li, Jingsong
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 134 - 138
  • [8] Integrating electronic health records (EHRs) to facilitate cancer biomarker testing: Real-world implementation barriers and solutions
    Huelsman, Karen M.
    Offit, Caroline
    Waugh, Wendi
    McNair, Christopher
    Kurtin, Sandra E.
    Enstad, Crystal
    Rice, Courtney
    Osterman, Travis
    Yu, Peter Paul
    Shepard, Gregg Christian
    Martin, Nikki A.
    Kim, Joseph
    Kisiel, Molly
    Plotkin, Elana
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [9] Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review
    Moglia, Victoria
    Johnson, Owen
    Cook, Gordon
    de Kamps, Marc
    Smith, Lesley
    BMC MEDICAL RESEARCH METHODOLOGY, 2025, 25 (01)
  • [10] Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview
    Ban Al-Sahab
    Alan Leviton
    Tobias Loddenkemper
    Nigel Paneth
    Bo Zhang
    Journal of Healthcare Informatics Research, 2024, 8 : 121 - 139