USBE: User-similarity based estimator for multimedia cold-start recommendation

被引:0
|
作者
Haitao He
Ruixi Zhang
Yangsen Zhang
Jiadong Ren
机构
[1] Yanshan University,
[2] Beijing Information Science and Technology University,undefined
来源
关键词
Recommender system; Collaborative filtering; Cold-start challenge; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
To address user cold-start challenge in multimedia recommender systems, we proposed a new model named USBE in this paper. The model doesn’t take the new user’s personal and social information as the necessary parameters to solve cold-start challenge, and new user can complete cold-start by having a simple system experience. Based on the user-similarity and the discrimination of the multimedia items, the model can recommend suitable items for cold-start users and let users choose and give feedback independently. Our model is lightweight and low delay, and provides a new cold-start mode. To complement USBE model, we proposed a cyclic training multilayer perceptron model (Re-NN) to get the strategy of new user’s user-similarity changes. Experiments on a real-world movie recommendation dataset Movielens show: Our model has good results and achieves state-of-the-art after 4 rounds of cold-start recommendations.
引用
收藏
页码:1127 / 1142
页数:15
相关论文
共 50 条
  • [31] Improving the Personalized Recommendation in the Cold-start Scenarios
    Gaspar, Peter
    Koncal, Matej
    Kompan, Michal
    Bielikova, Maria
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 606 - 607
  • [32] Aligning Distillation For Cold-start Item Recommendation
    Huang, Feiran
    Wang, Zefan
    Huang, Xiao
    Qian, Yufeng
    Li, Zhetao
    Chen, Hao
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1147 - 1157
  • [33] Functional Matrix Factorizations for Cold-Start Recommendation
    Zhou, Ke
    Yang, Shuang-Hong
    Zha, Hongyuan
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 315 - 324
  • [34] Deep Pairwise Hashing for Cold-Start Recommendation
    Zhang, Yan
    Tsang, Ivor W.
    Yin, Hongzhi
    Yang, Guowu
    Lian, Defu
    Li, Jingjing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3169 - 3181
  • [35] Feature Matching Machine for Cold-Start Recommendation
    Wu, Hanrui
    Li, Nuosi
    Kwok, Ka Ho
    Cai, Xuheng
    Zhang, Jia
    Long, Jinyi
    Ng, Michael K.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 98 - 112
  • [36] Cold-Start Recommendation for On-Demand Cinemas
    Li, Beibei
    Jin, Beihong
    Xue, Taofeng
    Liu, Kunchi
    Zhang, Qi
    Tian, Sihua
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 499 - 515
  • [37] MARec: Metadata Alignment for cold-start Recommendation
    Monteil, Julien
    Vaskovych, Volodymyr
    Lu, Wentao
    Majumder, Anirban
    van den Hengel, Anton
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 401 - 410
  • [38] PNMTA: A Pretrained Network Modulation and Task Adaptation Approach for User Cold-Start Recommendation
    Pang, Haoyu
    Giunchiglia, Fausto
    Li, Ximing
    Guan, Renchu
    Feng, Xiaoyue
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 348 - 359
  • [39] A Distributed Hybrid Recommendation Framework to Address the New-User Cold-Start Problem
    Wang, Jenq-Haur
    Chen, Yi-Hao
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1686 - 1691
  • [40] CMCLRec: Cross-modal Contrastive Learning for User Cold-start Sequential Recommendation
    Xu, Xiaolong
    Dong, Hongsheng
    Qi, Lianyong
    Zhang, Xuyun
    Xiang, Haolong
    Xia, Xiaoyu
    Xu, Yanwei
    Dou, Wanchun
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1589 - 1598