USBE: User-similarity based estimator for multimedia cold-start recommendation

被引:0
|
作者
Haitao He
Ruixi Zhang
Yangsen Zhang
Jiadong Ren
机构
[1] Yanshan University,
[2] Beijing Information Science and Technology University,undefined
来源
关键词
Recommender system; Collaborative filtering; Cold-start challenge; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
To address user cold-start challenge in multimedia recommender systems, we proposed a new model named USBE in this paper. The model doesn’t take the new user’s personal and social information as the necessary parameters to solve cold-start challenge, and new user can complete cold-start by having a simple system experience. Based on the user-similarity and the discrimination of the multimedia items, the model can recommend suitable items for cold-start users and let users choose and give feedback independently. Our model is lightweight and low delay, and provides a new cold-start mode. To complement USBE model, we proposed a cyclic training multilayer perceptron model (Re-NN) to get the strategy of new user’s user-similarity changes. Experiments on a real-world movie recommendation dataset Movielens show: Our model has good results and achieves state-of-the-art after 4 rounds of cold-start recommendations.
引用
收藏
页码:1127 / 1142
页数:15
相关论文
共 50 条
  • [1] USBE: User-similarity based estimator for multimedia cold-start recommendation
    He, Haitao
    Zhang, Ruixi
    Zhang, Yangsen
    Ren, Jiadong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 1127 - 1142
  • [2] MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation
    Lee, Hoyeop
    Im, Jinbae
    Jang, Seongwon
    Cho, Hyunsouk
    Chung, Sehee
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1073 - 1082
  • [3] Meta-Learning for User Cold-Start Recommendation
    Bharadhwaj, Homanga
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [4] How to Learn Item Representation for Cold-Start Multimedia Recommendation?
    Du, Xiaoyu
    Wang, Xiang
    He, Xiangnan
    Li, Zechao
    Tang, Jinhui
    Chua, Tat-Seng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3469 - 3477
  • [5] ColdU: User Cold-start Recommendation with User-specific Modulation
    Dong, Daxiang
    Wu, Shiguang
    Wang, Yaqing
    Zhou, Jingbo
    Wang, Haifeng
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 326 - 331
  • [6] A Movie Cold-Start Recommendation Method Optimized Similarity Measure
    Yi, Peng
    Yang, Chen
    Zhou, Xiaoming
    Li, Chen
    2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2016, : 231 - 234
  • [7] Task Similarity Aware Meta Learning for Cold-Start Recommendation
    Yang, Jieyu
    Huan, Zhaoxin
    He, Yong
    Ding, Ke
    Zhang, Liang
    Zhang, Xiaolu
    Zhou, Jun
    Mo, Linjian
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4630 - 4634
  • [8] A Preference Learning Decoupling Framework for User Cold-Start Recommendation
    Wang, Chunyang
    Zhu, Yanmin
    Sun, Aixin
    Wang, Zhaobo
    Wang, Ke
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1168 - 1177
  • [9] Managing Cold-Start Issues in Music Recommendation Systems: An Approach Based on User Experience
    de Assuncao, Willian G.
    Prates, Raquel O.
    Zaina, Luciana A. M.
    COMPANION OF THE 2023 ACM SIGCHI SYMPOSIUM ON ENGINEERING INTERACTIVE COMPUTING SYSTEMS, EICS 2023, 2023, : 31 - 37
  • [10] Meta learning-based relevant user identification and aggregation for cold-start recommendation
    Xing, Qian
    Xun, Yaling
    Yang, Haifeng
    Li, Yanfeng
    Wang, Xing
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024,