Fano varieties in index one Fano complete intersections

被引:0
|
作者
Damiano Testa
机构
[1] Università “La Sapienza”,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2008年 / 259卷
关键词
Line Bundle; Complete Intersection; Toric Variety; Global Section; Ample Line Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset {\mathbb{P}}^N$$\end{document} be a smooth complex complete intersection such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _X \simeq \mathcal {O}_X(-1)$$\end{document} . Let f : S → X be a generically finite morphism from a smooth projective variety to X. Under some positivity assumption on the anticanonical divisor of S, if 2 ≤ dim S ≤ dim X − 2 we prove that the deformations of f are contained in a subvariety of codimension at least 2.
引用
收藏
页码:61 / 64
页数:3
相关论文
共 50 条
  • [41] THE PSEUDO-INDEX OF HOROSPHERICAL FANO VARIETIES
    Pasquier, Boris
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (09) : 1147 - 1156
  • [42] On Fano varieties with large pseudo-index
    Chen, Jiun-Cheng
    ALGEBRAIC GEOMETRY IN EAST ASIA - SEOUL 2008, 2010, 60 : 195 - 213
  • [43] Infinitesimal Torelli for weighted complete intersections and certain Fano threefolds
    Philipp Licht
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 97 - 127
  • [44] Infinitesimal Torelli for weighted complete intersections and certain Fano threefolds
    Licht, Philipp
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 97 - 127
  • [45] Fundamental divisors on Fano varieties of index n − 3
    Enrica Floris
    Geometriae Dedicata, 2013, 162 : 1 - 7
  • [46] Coregularity of Fano varieties
    Moraga, Joaquin
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [47] Cylinders in Fano varieties
    Cheltsov, Ivan
    Park, Jihun
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2021, 8 (1-2) : 39 - 105
  • [48] Fano horospherical varieties
    Pasquier, Boris
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02): : 195 - 225
  • [49] Coregularity of Fano varieties
    Joaquín Moraga
    Geometriae Dedicata, 2024, 218
  • [50] Symmetries of Fano varieties
    Esser, Louis
    Ji, Lena
    Moraga, Joaquin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (819): : 89 - 133