Fano varieties in index one Fano complete intersections

被引:0
|
作者
Damiano Testa
机构
[1] Università “La Sapienza”,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2008年 / 259卷
关键词
Line Bundle; Complete Intersection; Toric Variety; Global Section; Ample Line Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset {\mathbb{P}}^N$$\end{document} be a smooth complex complete intersection such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _X \simeq \mathcal {O}_X(-1)$$\end{document} . Let f : S → X be a generically finite morphism from a smooth projective variety to X. Under some positivity assumption on the anticanonical divisor of S, if 2 ≤ dim S ≤ dim X − 2 we prove that the deformations of f are contained in a subvariety of codimension at least 2.
引用
收藏
页码:61 / 64
页数:3
相关论文
共 50 条