Estimating weak periodic vector autoregressive time series
被引:0
|
作者:
Yacouba Boubacar Maïnassara
论文数: 0引用数: 0
h-index: 0
机构:Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
Yacouba Boubacar Maïnassara
Eugen Ursu
论文数: 0引用数: 0
h-index: 0
机构:Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
Eugen Ursu
机构:
[1] Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
[2] Université de Bordeaux,BSE
[3] West University of Timisoara, UMR CNRS 6060
来源:
TEST
|
2023年
/
32卷
关键词:
Asymptotic normality;
Least squares estimation;
Periodic time series;
Weak PVAR models.;
62H12;
62M10;
91B84;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This article develops the asymptotic distribution of the least squares estimator of the model parameters in periodic vector autoregressive time series models (hereafter PVAR) with uncorrelated but dependent innovations. When the innovations are dependent, this asymptotic distributions can be quite different from that of PVAR models with independent and identically distributed (iid for short) innovations developed (Ursu and Duchesne in J Time Ser Anal 30:70–96, 2009). Modified versions of the Wald tests are proposed for testing linear restrictions on the parameters. These asymptotic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial data is also proposed.