A multi-objective optimization using response surface model coupled with particle swarm algorithm on FSW process parameters

被引:0
|
作者
Parviz Kahhal
Mohsen Ghasemi
Mohammad Kashfi
Hossein Ghorbani-Menghari
Ji Hoon Kim
机构
[1] Pusan National University,School of Mechanical Engineering
[2] Ayatollah Boroujerdi University,Department of Mechanical Engineering
[3] Islamic Azad University,Mechanical Engineering Department, Dezful Branch
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this study, multi-objective optimization of mechanical properties in friction-stir-welding of AH12 1050 aluminum alloy is performed using a combination of the response surface method and multi-objective particle swarm optimization algorithm. The process parameters are considered as tool pin diameter, shoulder diameter, rotational speed, feed speed, and tool tilt angle. The heat-affected zone’s yield strength, fracture strain, impact toughness, and hardness on the advancing and retreating sides are selected as the objective functions. Threaded and simple conical pins are utilized to evaluate the effect of the pin geometry on the specimen mechanical properties. Optimization model outputs are in agree with the obtained experimental results. The effects of process parameters on the mechanical properties of the friction-stir-welded sheets are studied. Results reveal that the lower rotational speed and higher feed speed improve the material strength and hardness. Moreover, the microstructural analysis demonstrates that the proposed methodology can achieve a fine-grained structure with the minimum defects. Improvement in the material flow is observed for the threaded cylindrical pin compared with the conical pin due to the geometric shape of the tool pin leading to more functional mechanical properties. It is found that the combination of the response surface methodology and the multi-objective particle swarm algorithm led to the modeling and optimization of the process with outstanding accuracy and low experimental cost.
引用
收藏
相关论文
共 50 条
  • [41] Multi-objective adaptive chaotic particle swarm optimization algorithm
    Yang, Jing-Ming
    Ma, Ming-Ming
    Che, Hai-Jun
    Xu, De-Shu
    Guo, Qiu-Chen
    Kongzhi yu Juece/Control and Decision, 2015, 30 (12): : 2168 - 2174
  • [42] A smart particle swarm optimization algorithm for multi-objective problems
    Huo, Xiaohua
    Shen, Lincheng
    Zhu, Huayong
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 72 - 80
  • [43] Algorithm and application of cellular multi-objective particle swarm optimization
    Zhu, D. (dlzhu@ctgu.edu.cn), 1600, Chinese Society of Agricultural Machinery (44):
  • [44] A multi-objective particle swarm optimization algorithm for rule discovery
    Li, Sheng-Tun
    Chen, Chih-Chuan
    Li, Jian Wei
    2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL II, PROCEEDINGS, 2007, : 597 - +
  • [45] A Modified Multi-objective Binary Particle Swarm Optimization Algorithm
    Wang, Ling
    Ye, Wei
    Fu, Xiping
    Menhas, Muhammad Ilyas
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 41 - 48
  • [46] On convergence analysis of multi-objective particle swarm optimization algorithm
    Xu, Gang
    Luo, Kun
    Jing, Guoxiu
    Yu, Xiang
    Ruan, Xiaojun
    Song, Jun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 286 (01) : 32 - 38
  • [47] The Research of Parallel Multi-objective Particle Swarm Optimization Algorithm
    Wu Jian
    Tang XinHua
    Cao Yong
    2014 5TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2014, : 300 - 304
  • [48] Particle swarm optimization for multi-objective process system optimization problems
    Mo, Yuan-Bin
    Chen, De-Zhao
    Hu, Shang-Xu
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2008, 22 (01): : 94 - 99
  • [49] A multi-objective particle swarm optimization for the submission decision process
    Adewumi A.O.
    Popoola P.A.
    International Journal of System Assurance Engineering and Management, 2018, 9 (1) : 98 - 110
  • [50] Enhanced Pareto Particle Swarm Approach for Multi-objective Optimization of Surface Grinding Process
    Lin, Xiankun
    Li, Haolin
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 618 - 623